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Key-value data structures are an essential component of today’s stateful packet processors such as load balancers,
packet schedulers, firewalls, and more. Supporting key-value data structures entirely in the data plane of an
ASIC switch would result in high throughput, low-latency, and low energy consumption. Yet, today’s key-value
implementations on ASIC switches are ill-suited for stateful packet processing as they support only a limited
amount of flow-state insertions per second into these data structures. In this paper, we present SWITCHAROO, a
mechanism for realizing key-value data structures on programmable ASIC switches that supports both high-
frequency insertions and fast lookups entirely in the data-plane. We show that SWITCHAROO can be realized
on state-of-the-art programmable ASICs, supporting millions of flow-state insertions per second with only a
limited amount of packet recirculation.
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1 Introduction
Stateful packet processing is an essential part of any modern network system. A stateful packet
processor stores, updates, and fetches that state that is needed to correctly process network traffic.
Load balancers [4, 13, 18], NATs [13], anomaly detection systems [33], and many other network
functionalities rely on the ability of the data plane to support stateful packet processors. The state
needed to process packets is typically stored using key-value data structures, which map traffic class
identifiers (e.g., the 5-tuple of a connection) to a value (e.g., the number of received packets).

Supporting key-value data structures on ASIC hardware devices has been challenging because of
the complexity of realizing key-value data structures at data-plane speed. Key-value data structures
typically support either constant-time lookups or constant-time insertions into its data structure. For
instance, cuckoo-hash tables [23] support constant-time lookups yet worst-case linear time insertions
whereas chained hash tables support the exact opposite [17]. Implementing complex non-constant-
time operations at data-plane speed on ASIC hardware devices is cumbersome due to the strict time
constraints set for processing a single packet [5]. Today’s ASIC switches support frequent lookup
operations at data-plane speed, although they depend on the slower CPU-based control plane for
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managing insertions [18]. Even next-generation ASICs [11] rely on the control-plane CPU to perform
table modifications from the data plane.

Delegating insertions to the control-plane presents two drawbacks. First, control-plane insertions
are slow with up to one millisecond of latency [18]. Such latencies are unsuitable for datacenter
environments where end-to-end latencies are confined to a few microseconds [14]. Second, the
control-plane cannot perform many insertions per second. To the best of our knowledge, a multi-
Tbps switch supports at most around 100 K insertions per second [34]. However, even a small
10 Gbps Internet traffic trace today requires >100 K insertions per second into a key-value structure
to keep per-flow state [7]. Unfortunately, many network functions today require both low-latency and
high-frequency insertions that go well beyond the performance of control-plane-based approaches.
For instance, we show that a Flowlet datacenter load balancer [30] may require more than 100
million insertions per second in order to load balance terabits per seconds of traffic. Even worse,
we also show that implementing Flowlet using probabilistic data structures, as opposed to an exact
key-value data structure, may result in up to 65× higher memory consumption to achieve similar
flow completion times.

In this paper, we present SWITCHAROO1, a mechanism to support lookups and insertions into a
key-value data structure entirely in the data plane. SWITCHAROO supports millions of insertions
per second as well as sub-microsecond insertions into the key-value data structure. SWITCHAROO
consists of a cuckoo hash mechanism that implements the insertion operation entirely in the data
plane of a programmable switch. As insertions into a cuckoo hash are not constant-time operations,
we rely on “recirculating” packets within the switch until the insertions succeed.

This simple idea comes with a large number of challenges that are unique to a data-plane
implementation. First, the amount of computational resources that can be used to implement the
cuckoo hash logic on an ASIC switch is constrained. Second, recirculating packets may lead to
simultaneous insertions from multiple flows that results in inconsistent flow state and packets being
transmitted out-of-order. Recirculating packets also increases bandwidth consumption. We present a
cuckoo-hash table design that is amenable to ASIC switch targets and supports both consistent and
in-order packet processing with limited packet recirculation overheads.

We evaluate SWITCHAROO on a multi-Tbps ASIC switch, i.e., Intel Tofino [12], showing that
our solution supports millions of insertions per second as well as 𝜇𝑠-insertion latencies with limited
levels of packet recirculation.
To summarize, our contributions are:
• We show a quantitative analysis of the benefits of using a key-value data structure in the data

plane for implementing a common network function such as a stateful load balancer. We focus
on the Flowlet load balancer use case, showing the need for >100 million low-latency insertions
per second. We also show a 65× higher memory requirement for implementing Flowlet using
probabilistic data structures.
• To the best of our knowledge, we are the first ones to support key-value lookups & insertions in

the data plane while guaranteeing state consistency and packet ordering.
• We present SWITCHAROO, a key-value mechanism that preserves the order of packets and prevents

inconsistencies during transient updates in a provable manner.
• We demonstrate through the implementation on a multi-Tbps ASIC switch the ability of

SWITCHAROO to support millions of low-latency insertions in the data plane.
• We publicly release all the code for running SWITCHAROO on the Tofino programmable switch [6].

1“Switcharoo” is a colloquial term derived from ’switcheroo’, informally referring to a situation where two things swap.

Proc. ACM Netw., Vol. 1, No. 3, Article 22. Publication date: December 2023.



Millions of Low-latency State Insertions on ASIC Switches 22:3

2 Background and Motivation
We now provide a minimal background on key-value data structures and we motivate the need to
support high-frequency and low-latency insertions.

Minimal background on key-value data structures. Key-value data structures are an abstract data
type that stores pairs of (𝑘, 𝑣) elements, where 𝑘 is a key and 𝑣 is a value associated with the key.
They support four main operations: insertion of a pair (𝑘, 𝑣) into the data structure, deletion of an
element given a 𝑘𝑒𝑦, the lookup of the value 𝑣 of an element given a key 𝑘 , or the update of the value
𝑣 for a key 𝑘 . Key-value data structures can be realized through different implementations that strike
different trade-offs with respect to the computational time of those four operations.

Chained hash tables support fast insertions in 𝑂 (1) time but slow lookups & deletion & updates
in worst-case 𝑂 (𝑛) time [19]. Conversely, cuckoo-hash tables support fast lookups & deletions &
updates in𝑂 (1) while slow insertions in𝑂 (𝑛) [19, 23]. Key-value data structures are a key component
of stateless and stateful network functions.

Stateless network functions run on ASIC switches with fast lookups and slow insertions. Today’s
networks rely on a large variety of network functions to steer, process, and analyze network traffic.
Basic network functions are stateless, such as IP routing, static transport port filtering, or ECMP load
balancing. In stateless network functions, the control plane pre-installs into the data plane a set of
forwarding rules that are matched by the packets. These rules are installed into either a key-value data
structure (for exact matches) or a TCAM (for wildcard matches). Importantly, the action applied to a
packet does not depend on the previously forwarded packets, e.g., it does not matter for IP routing
what previous packets have been forwarded.

Stateless network functions have long been running on ASIC switches, which operate at tens
of terabits per second and are orders of magnitudes more energy-efficient than general-purpose
CPUs [4]. These switches support billions of lookups per second and around 100 K insertions &
deletions & updates per second [34] through their control planes in response to updates from the
data plane, e.g., in case of link failures, BGP withdrawals, and more. One common type of key-value
data structure that is used for exact matches on ASIC is a cuckoo-hash table as it supports fast (more
common) lookups and slow (more rare) insertions from the slower control-plane.

Stateful network functions handle state at data-plane speed. More advanced network functions are
stateful, such as power-of-two-choices load balancers, per-flow counters, NATs, intrusion detection
systems, per-flow packet schedulers, and more. With stateful functions, the data plane stores and
updates a data structure (typically a key-value) that keeps the state needed to process packets. The
processing of a packet action in this case depends on the previously processed packets. For example,
consider a network function that load balances incoming connections towards a pool of servers in a
round-robin manner. When the load balancer receives the first packet of a flow, it assigns it a server,
stores this assignment in a key-value data structure through a (possibly fast) insertion, and forwards
the packet. Whenever the load balancer receives again a packet belonging to the same connection, it
will lookup into the key-value data structure and forward the packet to the assigned server.

Stateful network functions are hard to realize on ASIC. ASIC implementations must abide
to strict timing budget constraints, which makes it difficult to implement operations that have
unbounded worst-case time complexity (i.e., non-constant time). Unfortunately, all existing key-value
data structures cannot support both lookups and insertions in constant time. Performing insertions
from the CPU of the switch may take up to 1 ms and only 100 k insertions per second may be
supported [18, 34]. This latency penalty is not acceptable for a large variety of use cases, including
intra- and inter-datacenter communication, 5G, and more. Some works rely on bloom filters to store
state while the insertions take place through the CPU [18]. While this technique avoids the 1 ms
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penalty, it still suffers from the limited number of insertions per second that can be performed on
an ASIC switch (around 100 thousand [34]). The three main challenges to support a key-value data
structure in the data plane are therefore i) the high-volume of flow-state insertions required to keep
track of all flows on a high-speed switch, ii) the low latency required to insert the flow state, and iii)
the constraints on the available memory on the switch, which may not suffice to store the state for
all flows (even assuming the switch could support high-frequency insertions). In the following, we
discuss these aspects using Flowlet routing [30] as an example.
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Fig. 1. FCTs using a hash table or a
key-value data structure for Flowlet.

Example of network functions with high-volume
insertions: Flowlet routing [30]. We argue that ASIC
switches should support significantly higher rates of
insertions into their key-value data structures. Consider a
25.6 Tbps Broadcom Tomahawk 4 switch that processes
16 billion packets per second [24, 32]. Let us assume we
want to implement Flowlet on that switch. Flowlet [30]
is a network function that selects an outgoing port on
the switch for a burst of packets belonging to the same
connection, where a burst is defined by a time expiration
threshold set to 50 𝜇s. Each burst of the same flow may
be forwarded to a different port. The number of packets
received within a 50 𝜇s time interval at 25.6 Tbps is 160 k (assuming 1 kB average packets). Based on
datacenter traffic statistics [35], each flow on average generates around 300 packets, which translates
to roughly 10 million insertions per second. The size of the key-value data structure would be roughly
160𝑘
300 = 533 elements, occupying roughly 10 KB of memory on the switch (13 B for the 5-tuple and

4 B for the Flowlet state), which is almost negligible [11]. When each flow contains on average fewer
packets in a burst, the number of insertions increases. For instance, a recent work has shown that
a cloud service receives on average 6 packets of the same flow within 64𝜇s [9]. In this case, the
number of insertions raises to 533 million per second. This amount of insertions represents 3% of a
25.6-Tbps switch forwarding throughput in bits and 16% in packets per second.

Case study: a key-value data structure in the data plane would reduce the memory requirements
for implementing Flowlet routing by 65×. One may wonder whether there is a need to use an
exact key-value data structure to implement Flowlet instead of relying on an hash table that embrace
collisions, i.e., if two flows collide on the same entry, they are treated as the same flow. To understand
what is the impact of using a key-value data structure instead of an hash table, we use ns3 [22, 36] to
simulate a small 2-layer datacenter with 8 servers and 4 leaf/core switches (as in Hermes [35]) in
which each switch performs Flowlet routing. Fig. 1 shows the results of five runs. We perform two
experiments, the first (blue line) uses a hash table indexed using the 5-tuple hash to store the state
associated to flows, while the second (red line) uses a key-value data structure indexed using the full
5-tuple. For each experiment, we compute the Flow Completion Time (FCT) as a function of the size
of the respective data structure (in bytes), showing that with a key-value of about 1 KB we have the
same FCT as using a hash table that occupies 65 KB, leading to a memory reduction of 65×.

The number of insertions per second depends on the amount of memory on the switch and the
duration of the state. Many stateful network functions would benefit from switches that support
millions of low-latency insertions per second including packet schedulers, transport optimizers for
TCP/UDP/QUIC, network telemetry, in-network computing, 5G, and beyond.

Clearly, there is a trade-off between the amount of memory available on the switch and the amount
of insertions that makes sense to support. Consider a switch that has memory to store at most 𝑚
key-value pairs for a network function that needs to store state for exactly 𝑡 seconds. Then, the
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maximum amount of state insertions that makes sense to support is given by 𝑚
𝑡

. For instance, consider
a switch that has 20 MB of memory and two load balancer functions that store state (of 18 bytes) for
1 and 30 seconds respectively. In the worst-case, the load balancer storing state for 30 seconds would
need to support at most 37 K insertions per second while the load balancer storing state for 1 second
would need to support 666 K insertions per second. Clearly, the shorter the duration for which the
state must be stored, the higher the potential number of insertions a switch needs to support.

There are a large amount of network functions that store state for shorts amounts of time. Advanced
packet schedulers such as Reframer [9] need to schedule packets in batches of 100𝜇s at the per-flow
level. QUIC optimizers, such as jumbo frame builders, need to merge packets of the same flow into
larger packets. Network load balancers (e.g., Flowlet [30]) as well as cloud load balancers are other
examples that require higher number of insertions per second. Distributed storage systems such
as Pegasus [16] require fast key-value data structures for load balancing among replicas located
on different servers. Finally, in-network aggregation of data is another function that requires to
store state for short amounts of time. This is the case for machine learning (e.g., SwitchML [27]),
Map-Reduce (e.g., DAIET [26]) or sensor IoT networks [31].

Goal. In this work, we ask the following question:

“Can we support the four operations (i.e., lookup, insert, update, delete) of a
key-value data structure entirely in the fast data plane of an ASIC switch?”

3 System Design
We now present SWITCHAROO, a mechanism to implement key-value data structures entirely in the
data plane of a programmable ASIC. We set the following requirements:
• Fast lookups, as forwarding packets is essential on a switch, requiring top-speed support.
• High-frequency insertions, as required by advanced network functions, e.g., packet schedulers.
• Fast deletion of entries, to make efficient utilization of the constrained switch memory.
• Packets ordering, as packets of the same flow should not get re-ordered when leaving the switch.

3.1 Challenges
We now outline the key research challenges SWITCHAROO tackles to meet these system requirements.

Challenge #1: ASIC switch constraints. Realizing complex logic on an ASIC switch is challenging.
In this work, we tailor our mechanism to fit real-world constraints that exist for P4-enabled ASIC
programmable switches [10]. The closest data structure resembling a key-value data structure on such
switches is a table, which is typically implemented as a cuckoo hash where insertions are performed
by the slower CPU of the switch. A different data structure available on programmable ASIC switches
is an array register, where the elements of the array can be accessed only through an index of the
array (i.e., no lookup based on a key). Register arrays implement a transactional memory that can
be read/written at data-plane speed, i.e., the next process packet will see the updated state. There
exist three main constraints on what can be implemented using registers on programmable ASIC
switches: (𝑖) single-element-access: a packet can only access one element of the entire array; (𝑖𝑖)
single-register-access: a packet can access a register only once; (𝑖𝑖𝑖) registers-dependency: access to
the registers must define a partial order for all packets, i.e., if register 𝑟1 must be accessed before
register 𝑟2, then 𝑟2 cannot be accessed before 𝑟1 by any other packet. Any logic not respecting the
above constraints require to recirculate a packet through the switch and be processed a second time
(which represents a bandwidth overhead).
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We start from cuckoo-hash tables and tackle the slow insertion problem. The main challenge
tackled within this work is how to build a key-value data structure using register arrays. Lookups are
the most important operation and should be supported without recirculating packets. Chained hash
tables [19] implement lookups by iterating over a list, which may potentially require to recirculate
packets, so we do not rely on them. Linear-probing hash tables [8, 19] perform a lookup by accessing
two consecutive elements in an array, which violates a constraint on registers and therefore requires
recirculation. Conversely, cuckoo-hash tables perform a lookup by accessing two independent arrays
using two distinct hash functions, which is possible on programmable switches. We therefore focus
on realizing cuckoo-hash tables on ASIC programmable switches.

Additional background on cuckoo-hash tables. A minimal cuckoo-hash table consists of two
arrays accessed using two hash functions. A lookup operation of a key accesses the elements pointed
by the two hashes in the two arrays, respectively, and verifies if it finds the searched key. An insertion
of a key-value (𝑘, 𝑣) computes the two hashes of key 𝑘 and checks if there is an empty element in
any of the two arrays where it can insert the key-value pair. If this is the case, the insertion operation
terminates. If this is not the case, the cuckoo-hash table performs a swap operation: it inserts (𝑘, 𝑣)
in one of the two arrays and extracts the key-value pair (𝑘 ′, 𝑣 ′) that was stored there. It then tries to
insert the extracted (𝑘 ′, 𝑣 ′) into the other array. If the insertion succeeds, the insertion terminates. A
new swap operation is performed otherwise.

Challenge #2: Handling transient states during insertions. Multiple swapping operations may be
performed to insert a single element. This means that array registers may be accessed multiple times
and, therefore, packets must be recirculated to implement insertions. A key challenge introduced
by recirculating a packet is that this operation is not instantaneous. A switch may receive other data
packets while recirculating a swapping operation, which may lead to inconsistent transient states.
For example, the state of an existing flow will not be present in the key-value data structure while
it is swapped with a recirculation. Packets belonging to that flow not matching any state should
not assume that a new state must be created. This may result in security problems or performance
degradation. Some existing switches lock the data structure while performing updates, which may
lead to high packet drops [20]. Some other systems, e.g., Lucid [29] implement cuckoo-hash tables
insertions by recirculating packets, however, do not guarantee state consistency during insertions,
swaps, or state updates (see the related work in § 6). We need to devise the design of cuckoo-hash
tables to carefully handle these switch-specific transient states, described in § 3.3.

Challenge #3: Packets may leave the switch out-of-order. Another challenge introduced by
recirculating packets is that they might be reordered while being processed by the switch. In fact, the
switch guarantees that packets are processed sequentially in the pipeline, but recirculation may break
this property since recirculated packets are considered as new packets by the receiving port. Avoiding
packet reordering is a crucial property for any packet processor, since it leads to retransmissions,
increased latency, and jitter on the end hosts. Thus, we need to design a mechanism to guarantee that
packets within a flow are sent in the same order as they are received, that is described in § 3.4.

Challenge #4: The risk of infinite loops. Recirculating packets may lead to forwarding loops for
two main reasons: i) infinite-loop swap insertions or ii) packet drops. In the first case, an insertion
in a cuckoo-hash table may lead to a sequence of swap operations that is a loop, i.e., the insertion
never succeeds. Cuckoo-hash tables solve this problem by changing the hash functions and trying to
re-insert all elements. The key observation here is that in a data structure with millions of insertions
per second and state that is kept for a few microseconds, the content of the hash table is constantly
changing (on average every hundreds of nanoseconds). Therefore, we expect that loops would likely
break while performing insertions. In the second case, packet drops may easily make any auxiliary
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data structure for implementing a cuckoo hash inconsistent. For instance, if a swap packet gets
dropped, its state will be lost but existing packets may believe that the state is still recirculating and
would recirculate forever. Similarly, if a data packet gets dropped, the subsequent packet in the flow
may be recirculated to respect packet ordering (as the auxiliary data structures may be unaware of the
packet drop). We need to prevent or terminate forwarding loops to avoid a cascade-effect of packet
drops.

3.2 SWITCHAROO Cuckoo Hashing
We now present a high-level overview of SWITCHAROO: a system that implements a cuckoo-
hash table at data-plane speed while supporting millions of insertions (and deletions) per second,
guaranteeing packet ordering within each flow. SWITCHAROO consists of the following data
structures: (𝑖) a cuckoo-hash table with two arrays that stores states associated to flows, (𝑖𝑖) a
countable bloom filter to handle transient states, and (𝑖𝑖𝑖) three counter arrays that guarantee packet
ordering within a flow.

We index the two arrays in SWITCHAROO using two distinct hash functions that are fed with
the flow identifier of a packet (e.g., a TCP/IP 5-tuple). Each element in the table contains the flow
identifier, the value of the state associated to that flow, and an expiration timeout that we use to
determine when the switch can remove the state from the data structure.

We now describe how we implement the main operations of SWITCHAROO on a cuckoo-hash
table: lookups, update, insertions (including swaps), and deletions.

Lookup/Update. We implement lookups exactly as defined in any cuckoo-hash table. When a packet
arrives, we check whether the state for that packet exists in any of the two arrays using two distinct
hash functions. If the state exists, we read the state and forward the packet. If the state does not exist,
two cases are possible: we either (𝑖) need to generate a new state for the flow or (𝑖𝑖) we are currently
inserting/swapping the state that should be applied to this packet. An update is like a lookup but also
modifies the value.

Insertions. We implement insertions using special ad-hoc packets that contain metadata about the
key-value pair that needs to be inserted (see Fig. 2). The switch inserts the state in the first array of
the cuckoo-hash table. If the location is not empty (there is already some state), the switch swaps the
existing element with the one that must be inserted and repeats an insertion operation for the swapped
element into the second array. If there is again a swap operation in the second array, the switch
performs a new insertion in the first array by recirculating the packet. These insertion operations are
repeated (eventually with recirculation) until the insertion does not require to swap an element (i.e.,
the location in the cuckoo-hash table is either empty or there is an expired element).

Supporting selective flow insertions. In certain scenarios, one may want to keep track of states
only for specific/important flows. SWITCHAROO accommodates this requirement through a selective
flow insertion mechanism. It is possible to specify which flows to monitor (e.g., configuring a
match-action table), allowing to reduce the size of the deployed cuckoo-hash table and lowering both
switch memory and recirculation bandwidth utilization.

Supporting different state deletion policies. There are two main ways to remove elements from the
table using expiration timeouts: (𝑖) based on when the state has been generated (e.g., useful for packet
schedulers), or (𝑖𝑖) based on the last received packet (e.g., useful for Flowlet). Our system supports
both ways of updating expiration timeouts. To remove an entry, we can either rely on existing packets
that match the entry in the cuckoo hash or we can implement a timer-wheel data structure that is a
simple queue, which is realizable on programmable ASICs [21].
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3.3 Handling Transient States During Insertions
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Fig. 2. Handling transient states.

We now discuss the main challenge of handling
transient states during state insertions/swaps.
When a packet does not match any entry in
the cuckoo-hash data structure, we may need
to generate a new state (i.e., it is the first packet
of a flow) or not (i.e., we have already triggered
an insertion/swap for that flow, which is in
progress through a recirculation). To determine
this condition, we introduce an additional data
structure, called TRANSIENT-STATES, which
keeps track of the flows whose state is currently being inserted or swapped. We implement
TRANSIENT-STATES using a countable bloom filter with a single hash (see Fig. 2). A bloom
filter returns no false negatives: if the bloom filter says that there is not an insertion in progress for a
flow, it means that we can generate a new state without causing inconsistencies, i.e., two states for the
same flow existing at the same time. If instead, the bloom filter returns a value different from zero,
then it means that the state associated to the incoming flow may currently be inserted or swapped. We
conservatively recirculate the packet with the expectation that the packet will match this state after it
has been recirculated. If the state for processing that packet has never been created, recirculating
a packet will simply delay the generation of this state, which will be created only when the packet
does not match any state in the cuckoo table and the bloom filter returns zero (i.e., there is not an
ongoing insertion of the state for the flow of the packet).

Keeping track of transient states. To signal that a state is being swapped from the second to the
first array, each “swap” packet increases the bloom filter for the swapped flow by 1. After the swap
is performed, we decrease the TRANSIENT-STATES bloom filter by 1 for that specific flow. When
a packet fails the lookup in the cuckoo hash, we need to generate a new state through an insertion.
But, if the value of TRANSIENT-STATES is greater than zero, the insertion operation is reverted to a
lookup since the entry associated to the flow is being swapped from the second to the first array. To
give an example, in Fig. 2, the first packet of a blue flow has not matched an entry, which triggers an
insertion (realized through an ad-hoc packet) that is currently in progress (by being recirculated). If a
second data packet arrives, it will not generate a new state since the TRANSIENT-STATE bloom filter
has been set to 1 by the ongoing insertion. Thus, the second packet will be recirculated. When the
switch performs the insertion, TRANSIENT-STATES will be decreased by 1 and the second packet
will match the inserted entry.

3.4 Guaranteeing Packet Ordering
Consider a scenario in which the switch receives three consecutive packets of the same flow. If the
first packet fails the lookup, then it triggers an insertion and it is recirculated. The second packet is
processed before the first recirculated packet performs the insertion and it is also recirculated. Now,
the first packet re-enters the processing pipeline and performs the insertion. If the third packet arrives
before the second packet, the third one would hit a match and be forwarded before the second one.

To guarantee packet ordering, SWITCHAROO implements a simple idea. The switch starts to
sequentially numbering all packets of the same flow that arrive at the switch. The switch then
enforces that packets to leave the switch in the correct order by checking what is the next packet that
needs to be sent out to preserve packet ordering.

To implement this mechanism, we rely on three additional array-based data structures (with
the same size). The arrays are indexed using a single hash of the flow identifier of a packet. The
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data structures are ORDERING, PACKET-COUNTER, and NEXT-PACKET. Each element entry in
ORDERING keeps track the number of currently recirculated packets that are hashed to that entry.
Each element entry in PACKET-COUNTER counts the number of packets that have matched that entry
and is used to assign identifiers to newly incoming packets. Each element entry in NEXT-PACKET
stores the identifier of the next packet matching that entry that should leave the switch. The three
data structures implement three countable bloom filters with a single hash, which means that the
switch will preserve the ordering of packets for any set of packets that have a collision on the same
entry of the array. Again, we rely on a conservative approach to guarantee that states related to
packet ordering are handled correctly (at the cost of enforcing some unnecessary inter-flow ordering
guarantees). All the arrays have the same size. We add the aforementioned data structures after the
TRANSIENT-STATES bloom filter processing logic.

There are three types of packets that are processed by the ordering algorithm: packets that did not
match an entry in the cuckoo hash (and must be recirculated), packets that matched an entry in the
cuckoo hash, and recirculated packets. Note that, recirculated packets that are swapping an entry
must not be sent out (since these are control packets, not data packets). Hence they simply bypass
the ordering algorithm after the transient bloom filter.

(Non-recirculated) packets that did not match an entry. Assume the hash of the (non-recirculated)
packet is such that it accesses the data structures at a specific index. We omit the index in writing,
e.g., we write TRANSIENT-STATES instead of TRANSIENT-STATES [𝑖𝑛𝑑𝑒𝑥]. When a packet fails a
lookup in the cuckoo hash, it passes through the TRANSIENT-STATES. Here, the packet either finds a
value (𝑖) equal to zero (no insertions or swaps in progress) or (𝑖𝑖) greater than zero (indicating an
insertion or swap in progress).

(i) If the TRANSIENT-STATES value equals zero, the switch needs to signal to other packets
of the same flow that the current packet will recirculate for inserting the state. So, it
increments the TRANSIENT-STATES value by one. Moreover, it sets ORDERING to 1, it
sets PACKET-COUNTER to 1, it assigns PACKET-COUNTER as the identifier of the packet, and
sets NEXT-PACKET to 1. The packet is then marked with extra metadata to indicate the need to
perform an insertion and the packet is recirculated.

(ii) If the TRANSIENT-STATES value is greater than zero, it means that there is an insertion in
progress. The switch needs to recirculate the packet, increase ORDERING by one and assign it
a packet identifier based on PACKET-COUNTER.

The switch uses the identifier of the packet to preserve packet ordering within a flow. In fact, a
packet is sent out only when the identifier equals the entry in NEXT-PACKET.

(Non-recirculated) Packets that matched an entry. When a (non-recirculated) packet successfully
performs a lookup, it skips the check on TRANSIENT-STATES and it directly verifies the state of
the ORDERING value. If the value equals zero, it means that no other packet of the same flow
is recirculating, so the packet is sent out. Otherwise, the packet must wait its turn. The switch
increments ORDERING and assigns it an identifier based on PACKET-COUNTER. Finally, the packet
is recirculated.

Recirculated packets. The recirculated packets processed by the ordering data structures can be
of two types: packets that performed an insertion and packets that are waiting to be sent out. Both
types have the metadata carrying the identifier of the packet in the flow, so they are managed in the
same way. The switch reads NEXT-PACKET. If the value of NEXT-PACKET is equal to the one in the
metadata, the packet can be sent out preserving the order. Hence, the switch decrements ORDERING
and increments NEXT-PACKET (now equal to the counter of the next packet to send out). Otherwise,
the packet is recirculated waiting for its turn (skipping the cuckoo-hash).
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Example: packet ordering and consistency. We now clarify how packet ordering is guaranteed with
an example. Note that only packets that have the same identifier as the same value of NEXT-PACKET
can be sent out. This ensures that the order within a flow (or all flows using the same index, to
be precise) is preserved. Moreover, to guarantee the consistency among states, our mechanism
allows packets to read the state only if their identifier matches the value of NEXT-PACKET. We
clarify this with an example. Consider Fig. 3 in which four packets have been processed by the
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Fig. 3. Guaranteeing packet ordering.

switch as follows. The first packet of
a Blue flow has triggered an insertion.
When this happened, the switch
increased the TRANSIENT-STATES by
1, it set the PACKET-COUNTER value
to 1, the packet identifier to 1, and the
NEXT-PACKET to 1. When the second
packet arrives, it does not match any
entry. It checks the TRANSIENT-STATES entry and detects an ongoing insertion. The switch increases
PACKET-COUNTER to 2, stores the packet identifier 2 in the packet metadata, and recirculates the
packet. The same happens for the third and fourth packet. At this point, PACKET-COUNTER is 4 and
NEXT-PACKET is still 1. Assume the insertion is now executed, which decreases TRANSIENT-STATES
to 0. This is exactly the state represented in the figure. Now, if the fifth packet arrives, it would
perform a successful lookup (the first packet already performed the insertion) reading the state before
the second packet. To handle this case, since the PACKET-COUNTER is 2 and not 5, the switch assigns
5 as the new identifier, increases ORDERING, and recirculates the new incoming packet disregarding
the state that has been read. When the second packet re-enters the pipeline, it matches the new
state and since NEXT-PACKET is equal to 2, it is forwarded. Additionally, the switch increments
NEXT-PACKET (now equals to 3) and decreases ORDERING. The algorithm is repeated until the fifth
packet is forwarded when ORDERING is reset to zero.

Supporting dynamic updates to the values. Note that, the design of SWITCHAROO allows states
to be updated at runtime, ensuring the consistency. This capability is fundamental to implement a
variety of use cases that require to update the states associated to flows during the processing (e.g.,
NFs based on state machines [29]). For example, a jumbo frame builder needs to update the state
every time a packet is merged. Such property is not guaranteed by other systems such as Lucid [29].

3.5 Handling Infinite Forwarding Loops
There are two main reasons that create forwarding loops: swaps of insertions and packet drops. In
the case of swaps or insertions, loops would naturally break in SWITCHAROO since each entry has
an associated expiration timeout, which is very small for the NFs that can be supported in the limited
memory of an ASIC switch. Moreover, such expiration timeout is only updated by insertion, lookup,
or update packets, ensuring that a loop of swapping entries (that cannot update timers) ends when
one of the involved entries expires.

We now discuss the case where the forwarding loop is caused by packet drops within the switch. In
this scenario, the additional data structures required to handle both transient states and packet ordering
may misalign, causing a stall in the forwarding of any packet. Consider again the example depicted
in Fig. 3. The first packet fails the lookup, and enters the transient state logic to signal that it needs
to perform an insertion. The switch increments TRANSIENT-STATES, it sets PACKET-COUNTER
to 1, stores this packet identifier in the packet metadata, and recirculates the packet (other data
structures updates are omitted for simplicity). Assume now the first packet is dropped by the switch
(e.g., due to congestion). The second packet arrives, it does not match any entry, it checks the
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TRANSIENT-STATES and detects an ongoing insertion. After assigning a packet identifier (equal
to 2), the packet recirculates and fails the lookup again, it reads the TRANSIENT-STATES which is
still equal to 1, it skips the ordering logic (since it already has a packet identifier), and it recirculates
again. It is clear that the packet will recirculate indefinitely, waiting for the packet with identifier 1
to decrease the TRANSIENT-STATES value. In order to prevent this scenario, we set a configurable
threshold on packets recirculating in the TRANSIENT-STATES. If the number of recirculations reaches
the threshold, the value of the TRANSIENT-STATES is reset to zero, and the packet is treated as a
new insertion.

3.6 Proof of Correctness
In this section, we prove the correctness of the SWITCHAROO mechanism (all the detailed proofs can
be found in Appendix A). First, we propose a set of lemmas that is of general interest for analyzing
P4 programs targeting PISA switches. Then, we prove that SWITCHAROO guarantees three key
properties in the absence of packet drops:
• Ordering: after processing a packet, its order within a flow is preserved.
• Consistency: when a state 𝑠 for a flow 𝑓 is created, then all the subsequent packets of 𝑓 will match
𝑠 until the expiration-timeout expires.
• Termination: considering an input sequence of packets 𝑃 , all the packets of 𝑃 that enter the switch

are forwarded to the final destination, i.e., no infinite forwarding loops.
We introduce two preliminary lemmas to simplify the modeling of a PISA switch processing.

LEMMA 3.1. Consider a multi-stage switch and a sequence of packets. We can model the packet
processing as if the switch processes one packet at a time.

LEMMA 3.2. A packet processed at the switch can be either routed to an output port or recirculated
back to the switch.

By Lemma 3.1, we can simply analyse the processing of one packet at a time (through all the
stages). By Lemma 3.2, a packet 𝑝 that enters the switch can only be a new packet or a recirculated
packet. Considering these properties, we can model the input packets on the switch as either newly
incoming packets or recirculated packets.

We now prove that SWITCHAROO satisfies the three aforementioned properties: ordering,
consistency, and termination. Before starting, we introduce some notation. In the next, we call 𝑡1 and
𝑡2 the first and second array of the cuckoo-hash data structure. We denote with ℎ1 the hash function
used to index 𝑡1, and with ℎ2 the hash function used to index 𝑡2. We use the same notation of § 3.3
and § 3.4 for the transient bloom filter and the ordering data structures. The only difference is that, to
account the single-register-access constraint of programmable ASICs, we split TRANSIENT-STATES
in two distinct arrays, namely SWAPPING (counts packets that are recirculating for a state swap) and
SWAPPED (counts successful state swaps). Moreover, we denote with (𝑖) ℎ𝑡𝑠 the hash function used
to index both SWAPPING and SWAPPED, and (𝑖𝑖) ℎ𝑜𝑟𝑑 the hash function used to index ORDERING,
PACKET-COUNTER and NEXT-PACKET. In the next, when we refer to an operation on these registers
(e.g., lookup, insert, update), we consider that the operation is performed at the index computed by
the corresponding hash function on the 5-tuple T𝑝 of the packet. Considering a packet 𝑝, we denote
by 𝑝.𝑜𝑝 ∈ {INSERT,LOOKUP,DELETE,WAIT,SWAP} the processing operation associated to it.
We denote by 𝑓𝑝 the flow identifier of a packet 𝑝.

Ordering. We prove that SWITCHAROO algorithm guarantees packet ordering within a flow. We first
state in Lemma 3.3 that a packet leaves the switch only when it is its turn, and then use that lemma to
prove the main theorem about packet ordering.
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LEMMA 3.3. A recirculated packet 𝑝 exits the switch iff it has read a state from the tables and
𝑝.𝑖𝑑𝑥 = NEXT-PACKET at ℎ𝑜𝑟𝑑 (T𝑝 ). Moreover, the value of NEXT-PACKET is incremented only
when the packet with 𝑝.𝑖𝑑𝑥 = NEXT-PACKET is sent out.

THEOREM 3.4 (ORDERING). SWITCHAROO does not change the order of packets within a flow.

PROOF. Consider a sequence of packets of a flow [𝑝1, . . . , 𝑝𝑛]. Suppose that 𝑝𝑛 exits the switch
before a packet 𝑝𝑛−𝑖 , with 𝑖 > 0. If 𝑝𝑛 exists, it means that 𝑝𝑛 reads the identifier of 𝑝𝑛 in
NEXT-PACKET. However, by Lemma 3.3, NEXT-PACKET is increased to 𝑝𝑛 .𝑖𝑑𝑥 only when 𝑝𝑛−1.𝑖𝑑𝑥
leaves the switch. With a simple induction, this means that also packet 𝑝𝑛−𝑖 with 𝑖 > 0 must have
been forwarded, which proves the theorem by contradiction. □

Consistency. We now prove with the help of the following lemmas that SWITCHAROO guarantees
the consistency of the states read by packets within a flow. The first two lemmas guarantee that a
packet does not generate and insert a new state if a non-expired state exists in any of the two arrays
of the cuckoo hash table.

LEMMA 3.5. A packet 𝑝 cannot overwrite an already-inserted non-expired state for 𝑓𝑝 on 𝑡1.

LEMMA 3.6. A packet 𝑝 cannot insert a state for 𝑓𝑝 in 𝑡1 if a non-expired state for 𝑓𝑝 exists in 𝑡2.

The next lemma guarantees that a packet always leaves the switch after reading the correct state.

LEMMA 3.7. Consider a state 𝑠𝑓 associated to a flow 𝑓 , stored in 𝑡1 or 𝑡2. A packet 𝑝𝑛 ∈ 𝑓
matching the state 𝑠𝑓 does not disregard it iff the previous packet 𝑝𝑛−1 had already been sent out.

The following lemma guarantees that an insertion of a state happens only when there are no
non-expired states in the arrays of the cuckoo hash table and that only the next packet that should be
forwarded will be responsible to insert this state. After that, we prove the main theorem.

LEMMA 3.8. A packet 𝑝 of a flow 𝑓 can perform an insertion iff there is not an associated state to
𝑓 in 𝑡1 and 𝑡2, and it is the next packet of 𝑓 to exit (i.e., 𝑝.𝑖𝑑𝑥 = NEXT-PACKET at ℎ𝑜𝑟𝑑 (T𝑝 )).

THEOREM 3.9 (CONSISTENCY). SWITCHAROO does not create state inconsistencies in the
cuckoo-hash tables.

PROOF. Lemma 3.5 guarantees that a valid state associated to a flow 𝑓𝑝 cannot be overwritten
by a packet belonging to 𝑓𝑝 . Lemma 3.6 guarantees that a flow 𝑓𝑝 can have at most one state in the
cuckoo-hash tables. Lemma 3.7 ensures that lookup operations are performed respecting the order of
the packets within a flow. Finally, Lemma 3.8 ensures that insertions, where needed, are performed
only by the next packet to send out within a flow. These four properties ensure that the state read
from a packet 𝑝𝑛 of a flow 𝑓 is consistent with the one read by 𝑝𝑛−1. □

Termination. We now prove that SWITCHAROO guarantees the termination property. There are only
two types of packets that may recirculate. We prove in the following two lemmas that such packets
always leave the switch, which prove the main theorem 3.12.

LEMMA 3.10. A packet 𝑝 of a flow 𝑓 can perform an insertion iff there is not an associated state
to 𝑓 in 𝑡1 and 𝑡2, and it is the next packet of 𝑓 to exit (i.e., 𝑝.𝑖𝑑𝑥 = NEXT-PACKET at ℎ𝑜𝑟𝑑 (T𝑝 )).

LEMMA 3.11. A packet 𝑝 with 𝑝.𝑜𝑝 = LOOKUP, that failed the lookup on both tables and finds
SWAPPING > SWAPPED, continues to recirculate until it reads (inserts) a state from (into) 𝑡1 or 𝑡2,
then it always exits the switch.

THEOREM 3.12 (TERMINATION). SWITCHAROO ensures that each input packet 𝑝 exits the
switch in a finite amount of time.
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4 Implementation
We implemented SWITCHAROO in P4_16 language, and compiled it on an Intel Tofino 1 ASIC [12].
We publicly release all the P4 code for running SWITCHAROO [6].

On a Tofino 1 switch, our implementation spans two pipes connected in a series, while it would be
possible to deploy the entire processing pipeline on a single pipe on next-generation programmable
ASICs [2, 11]. The first pipe implements the cuckoo hash with two arrays based on the design
described in § 3. To perform hash indexing on the tables, we use the 4-tuple composed of SrcIP,
DstIP, SrcPort, DstPort (we could support a 5-tuple as well). Each table is implemented using five
registers. Three 32-bit registers store the 4-tuple composed of SrcIP, DstIP, Src+DstPort (ports are
collapsed in a single 32-bit value). Another 16-bit register is the value associated to the key tuple. A
32-bit register is used to store the timestamp of the entry, which is used to implement the deletion
policy described in § 3. The second pipe implements the SWAPPING and SWAPPED bloom filters
using two 16-bit registers, as described in § 3.6. The data structures responsible for packet ordering
use three 16-bit registers. In this Tofino implementation, we only support values of 32 bits. The value
size ultimately depends on the specific P4 target used to realize SWITCHAROO.

Consistency guarantees. Due to the data plane resources constraints on Tofino 1, the current
implementation does not guarantee Lemma 3.7, which enforces that lookup operations can only
be performed if a packet 𝑝 has 𝑝.𝑖𝑑𝑥 = NEXT-PACKET. We relax this constraint by allowing any
packet 𝑝 with 𝑝.𝑖𝑑𝑥 ≠ NEXT-PACKET to perform a lookup and store the state as metadata when
recirculated. Hence, our implementation satisfies a subset of the consistency properties that we call
weak consistency. This choice leads to a simpler implementation that is feasible on a Tofino 1 ASIC.

Resource Pipe 1 Pipe 2
Stages 12 6
SRAM 18.23% 10.54%
TCAM 0.69% 1.79%

VLIW Instructions 12.50% 12.50%
Exact Match Crossbar 19.34% 9.49%

Ternary Match Crossbar 0.51% 1.08%

Table 1. Required ASIC resources.

However, the full consistency property could fit within the
resources provided by next-generation ASICs [2, 11]. We do
not observe any inconsistency in our evaluation, even if we
only support weak consistency.

ASIC Resources Usage. Table 1 shows the additional ASIC
resources consumed by SWITCHAROO on both pipes when
compiling the program with the maximum possible amount
of entries in the registers, i.e., 65 K entries.

5 Evaluation
In this section, we demonstrate that SWITCHAROO is capable of supporting millions of insertions
in the data plane, illustrating the overheads introduced by the system. Both the P4 code and all the
evaluation scripts, including documentation for full reproducibility, will be made available.

In the following, we aim to answer the following questions:
Q1: “How many insertions per second are supported by SWITCHAROO?”
Q2: “How does the cuckoo table size impact the recirculation bandwidth?”
Q3: “How does the cuckoo table size impact the amount of swaps that require a recirculation?”
Q4: “How does the expiration timeout impact the amount of recirculation?”
Q5: “How does the ordering structures size impact the recirculation?”
Q6: “Does SWITCHAROO impact the end-to-end latency?”
Q7: “Is any packet delivered out of order, i.e., not satisfying packet ordering guarantees?”
Q8: “How many times are data packets recirculated (i.e., increased latency)?”
Q9: “Does the recirculation impact the packets’ latency?”

The evaluated implementation leverages SWITCHAROO to implement Flowlet routing with 50𝜇s
expiration timeouts (unless specified). Thus, it has to choose an output port for each incoming flow,
and store this state for a certain amount of time. Our testbed is composed of a Tofino switch running
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SWITCHAROO, directly attached with four links to another Tofino switch that 4× multicasts the
traffic (with 1 KB packet sizes) coming from a traffic generator implemented in FastClick [3]. The
testbed is wired with 100 Gbps links. The cuckoo table size is set to 32 K entries while the other data
structures are set to 65 K entries, unless otherwise specified. Tests are repeated 10 times.

Traffic workload. In each experiment, we generate three types of synthetic traffic: (𝑖) in1-PKT
FLOWS, all packets belong to distinct flows, thus each packet results in an insertion, i.e., 12.5 M
insertions per second at 100 Gbps, (𝑖𝑖) in 2-PKT FLOWS, flows consist of two non-consecutive
packets within 50 𝜇s, thus on average an insertion every two packets, requiring 6.25 M of insertions
per second at 100 Gbps, and (𝑖𝑖𝑖) in 8-PKT FLOWS, flows consist of 8 non-consecutive packets
within 50 𝜇s (which is in line with the average number of packets per flow in a cloud datacenter [9]),
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Fig. 4. Insertions per second w.r.t input throughput.

hence the switch performs 1.25 M of insertions
per second at 100 Gbps.

Q1: Million of insertions per second. Fig. 4
shows the number of insertions per second (y-
axis) as a function of the input throughput
(x-axis). The result shows that insertions
scale linearly with respect to the input traffic.
SWITCHAROO effectively performs insertions at
line rate, reaching 50 M insertions per second at
400 Gbps in the 1-PKT FLOWS case. Comparing
this result with solutions that perform insertions from the control plane (in the order of 100 K [34]),
the level of achieved performance is 50.000× higher, fundamentally pushing the barrier of what is
possible to offload into ASIC devices. Note that we use more than one recirculation port to perform
experiments that need more than 100 Gbps of recirculation bandwidth. The number of insertions per
second is limited by our testbed, not the implementation. For this experiment, we also consider a
real-world CAIDA trace. The original trace achieves a maximum throughput of 4.5 Gbps, which
is well below the throughput of our switch. We therefore increase the throughput of the trace to
85 Gbps without altering the flow-size distribution. We then replay the trace from our traffic generator,
multicasting it on multiple output ports on the Tofino to further increase the throughput. To avoid
increasing the size of each flow when multicasting packets, we re-write the 5-tuple of each flow when
we multicast it on a different port. This mechanism increases the throughput and the number of flows
in the trace without increasing the size (in packets) of the individual flows. The experiment confirms
again the performance of SWITCHAROO, even on real-world traffic scenarios.2

Q2: The cuckoo table size has a limited impact on the recirculation bandwidth. Fig. 5(a) shows
the bandwidth of the recirculation ports (y-axis) as a function of the cuckoo table sizes (x-axis). The
input traffic is 100 Gbps. The 1-PKT FLOWS line requires a recirculation bandwidth equal to the
input throughput since each packet recirculates at least once for the insertion, after performing a
lookup (which fails). In more realistic scenarios, the recirculation bandwidth is lower and ranges
from 20 Gbps (8-PKT FLOWS case) to 50 Gbps (2-PKT FLOWS case) for all the table sizes.

Q3: Limited amount of swaps. Fig. 5(b) shows the percentage of swap operations that require
recirculating a packet over the total number of insertions (y-axis) as a function of the cuckoo table
sizes (x-axis). The input traffic is 100 Gbps. As expected, by reducing the table size, the percentage
increases. Due to the flows composition, the 2-PKT FLOWS case has the highest ratio since it presents
the highest number of non-expired entries, generating about 1.2 swaps for each insertion. However,

2Given the similarity in results between the CAIDA trace and the 2-PKT FLOWS synthetic trace at 100 Gbps, in the next
experiments we will only consider the latter to better control input flows.
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by enlarging the table (e.g., 4 K entries), the number of required swaps drops, until reaching a value of
zero, i.e., the cuckoo-hash table is large enough to perform insertions without requiring recirculation.
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Fig. 5. Recirculation bandwidth and swaps.

Q4: SWITCHAROO supports up to 100𝑚𝑠 of entry expiration timeout. We now demonstrate
that SWITCHAROO is able to support a wide range of entry expiration timeouts without incurring in
additional overheads. Fig. 6(a) shows the bandwidth of the recirculation ports (y-axis) with a varying
expiration timeout (x-axis) that ranges from 10 𝜇𝑠 up to 100𝑚𝑠. The input traffic is 100 Gbps. Up
to 2𝑚𝑠, all the cases are able to sustain the input traffic without additional recirculation bandwidth
overheads. Starting from 5𝑚𝑠, 1-PKT FLOWS and 2-PKT FLOWS cases start to require additional
bandwidth, until they begin to drop packets at 100𝑚𝑠. The 8-PKT FLOWS case reaches 20𝑚𝑠 without
additional requirements, being also able to sustain up to 100𝑚𝑠 without packet drops. The trend is
confirmed in Fig. 6(b), where we plot the percentage of swap operations that require recirculating a
packet over the total number of insertions.
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Fig. 6. Recirculation bandwidth and swaps varying the entry expiration timeout.

Q5: Smaller ordering structures can still guarantee limited recirculations. Fig. 7(a) shows the
bandwidth of the recirculation ports (y-axis) as a function of the ordering structures size (x-axis). The
input traffic is 100 Gbps. The results are in line with the ones depicted in Fig. 5(a), with the 2-PKT
FLOWS and 8-PKT FLOWS cases having a recirculation bandwidth of 20 Gbps and 50 Gbps for all the
sizes, respectively. It is worth noticing that the 1-PKT FLOWS case has a higher overall recirculation
bandwidth with 1 K entries. In this case, the data structures cannot handle the total amount of flows,
which collide very frequently on the same entries, introducing unnecessary inter-flow ordering that
causes a dramatic increase in the number of recirculated packets. However, results with bigger data
structures guarantee the same level of performance depicted in Fig. 5(a). This finding is further
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confirmed in Fig. 7(b), where we plot the percentage of swap operations that require recirculating
a packet over the total number of insertions, varying the ordering structures size. In the 1-PKT
FLOWS case, 1 K entries are not enough to handle the 100 Gbps input traffic, leading to packet drops.
However, bigger data structures achieve the same results shown in Fig. 5(b).
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Fig. 7. Recirculation bandwidth and swaps varying ordering structures size.

Q6: Small impact on the end-to-end latency. Fig. 8 shows the end-to-end latency (y-axis) as a
function of the cuckoo tables size (x-axis). The input throughput is 90 Gbps. For each traffic type, we
compute the median and the tail (99’th perc.) latency depicted in Fig. 8(a) and Fig. 8(b), respectively.
Analyzing the figure, we notice that the curves are all below 10𝜇s. This result demonstrates that, even
considering recirculations, SWITCHAROO has a small impact on the end-to-end latency.
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Fig. 8. End-to-end latency varying table size.
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Fig. 9. Out-of-order packets w.r.t table size.

Q7: SWITCHAROO is effective in guaranteeing
packet ordering. To verify that SWITCHAROO
guarantees packet ordering in the absence of drops,
we measure in Fig. 9 the percentage of out-of-order
packets over the total number of packets (y-axis) for
different cuckoo table sizes (x-axis) with an input
traffic of 100 Gbps. We run SWITCHAROO with and
without the ordering data structures, focusing on the
8-PKT FLOWS case, since it is the only traffic pattern
containing enough packets that could be transmitted
out of order while performing an insertion. The
empirical results demonstrate that SWITCHAROO
(with the ordering data structures) effectively guarantees packet ordering, confirming the theoretical
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results of § 3.6. It is worth noticing that even if the percentage of out-of-order packets is negligible,
and decreases to zero when the table is large enough, it depends on the workload type and could be
higher with different traffic patterns and different expiration timeouts.

Q8: SWITCHAROO supports low-latency insertions by limiting packet recirculation. Fig. 10(a)
shows the percentage of packets (y-axis) that recirculate a specific amount of times (x-axis). The
input traffic in 100 Gbps. Analyzing the 1-PKT FLOWS case (red bar) we see that almost all the
packets recirculate one time, with a negligible percentage that recirculate two times due to collisions
of different flows in the ordering data structures, which force some packets to recirculate waiting
for their turn. Instead, considering 2-PKT FLOWS and 8-PKT FLOWS cases (blue and green bars,
respectively), we observe that more than 50% of packets perform a successful lookup, exiting the
switch without recirculating, while the remaining part recirculates only once.
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Fig. 10. Recirculated packets and end-to-end latency.

Q9: Recirculating packets adds a reasonable latency overhead. To understand the impact of
the recirculation induced by swapping entries from the second to the first table, we measure the
median end-to-end latency of packets that recirculate a certain number of times. The input traffic
in 100 Gbps. Fig. 10(b) highlights that each recirculation adds about 1.5 𝜇s to the overall latency.
Moreover, consider that the tested SWITCHAROO implementation is deployed on two pipes of the
Tofino 1 ASIC, meaning that some extra overhead is introduced by internal recirculations to pass
packets between the pipes. We expect that a single-pipe implementation would introduce a much
lower latency overhead.

6 Related Work
To the best of our knowledge, we are the first to design a key-value mechanism that is entirely
implemented using programmable ASICs data-plane primitives and that theoretically guarantees
packet ordering and state consistency. This section summarizes some related works.

Stateful processing in the data plane. We focus on techniques for stateful processing on hardware
devices and omit both work related to general-purpose CPUs and work that have already been
discussed in § 2. TEA extends the memory of a switch but still relies on insertions from a CPU
through a stash data structure, incurring high latency and low frequency. Cheetah [4] is a stateful
load balancer that performs both lookups and insertions in the data plane of a programmable switch.
To achieve this, the authors rely on cookies that are sent at the connection establishment to the
endpoints (containing the index where to fetch the state in an array). However, this requires to
trick the TCP timestamp option, which is a hack, and it is not supported by Windows machines [4].
Moreover, state can only be inserted on the first packet of a connection, meaning Flowlet and other
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NFs cannot be supported. Conversely, we do not want any involvement from the endpoints (because
of security issues and lack of compatibility) and we want to insert state also outside connection
establishment (as in the case of packet schedulers). Both these requirements cannot fundamentally be
supported in Cheetah. Tiara [34] is a load balancer that extends an ASIC switch with eight FPGAs
and CPUs to support high-throughput and high-volume insertions. Conversely, we focus only on
ASIC (programmable) switches, which are significantly cheaper (8 high-end FPGAs cheaper, which
we estimate is in the 50K USD range) and more energy-efficient than FPGAs.

Cuckoo hashing in the data plane. Several works have tackled the problem of implementing
cuckoo-hash tables in the data plane. FlowBlaze [25] is a system for building high-speed stateful NFs
using FPGAs. FlowBlaze leverages on a cuckoo-hash table to store flow states, with consistency and
ordering guarantees (similarly to SWITCHAROO). However, our ASIC switch mechanism is different
from FlowBlaze due to different hardware constraints. Moreover, FPGAs are more expensive and
less energy-efficient than ASICs. Some work envisioned the possibility to realize cuckoo-hash tables
in ASIC (e.g., [15]). However, these works do not implement and test a real-world implementation
and, to the best of our knowledge, currently high-speed datacenter ASIC switches do not support key-
value structures as a primitive in their chips. Lucid [29] proposes a high-level abstraction language
for programming packet-processing pipelines of programmable ASIC switches. In the evaluation,
authors demonstrate the feasibility of implementing a stateful firewall using a cuckoo-hash table.
However, (𝑖) Lucid cannot guarantee consistency when inserting or swapping elements as it creates
a copy of the state that is stored in a stash and not synchronized back with the recirculated state
(see line 150 of [1]). Lucid only guarantees consistency when inserting the state on the first packet
of a flow (as in the simple firewall that they evaluate). This limitation implies that with Lucid it is
not possible to build anything relying on a packet counter or a jumbo frame builder (which need to
update the state associated to a flow at every packet). Dart [28] is a data-plane monitoring system
for Round-Trip-Times (RTTs) that leverages a data structure similar to a cuckoo-hash table to store
states. Dart performs state modifications on copies of original packets, thus not requiring packet
ordering. Also, there are no guarantees about state consistency during insertions. Moreover, there is
no evaluation showing millions of state insertions per second. Finally, the data structures in Dart are
specific to RTT monitoring, while we propose a general-purpose cuckoo-hash table.

7 Conclusion
In this work, we show that is fundamentally possible to support hundreds of millions of 𝜇s-latency
insertions per second on a programmable switch by realizing the entire logic with data plane available
primitives. We guarantee that the insertions preserve packet ordering and state consistency. The
level of achieved performance is orders of magnitude higher than existing solutions based on slow
insertion into ASIC switches from a CPU-based control plane, fundamentally pushing the barrier of
what is possible today to offload into ASIC devices. We plan to further investigate the possibility
opened by FPGA-equipped ASIC switches and stash-based approaches.

Acknowledgements
We would like to thank our shepherd, the anonymous reviewers for their insightful comments
and suggestions on this paper. This work has been partially supported by the Swedish Research
Council (agreement No. 2021-04212) and KTH Digital Futures. This work has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 770889).

Proc. ACM Netw., Vol. 1, No. 3, Article 22. Publication date: December 2023.



Millions of Low-latency State Insertions on ASIC Switches 22:19

References
[1] Lucid - Stateful Firewall (Github), 2023. https://github.com/PrincetonUniversity/lucid/blob/main/examples/publications/

sigcomm21/orig/stateful_fw.dpt#L150.
[2] A. Agrawal and C. Kim. Intel Tofino2 – A 12.9Tbps P4-Programmable Ethernet Switch. In 2020 IEEE Hot Chips 32

Symposium (HCS), pages 1–32, 2020.
[3] T. Barbette, C. Soldani, and L. Mathy. Fast Userspace Packet Processing. In Proceedings of the Eleventh ACM/IEEE

Symposium on Architectures for Networking and Communications Systems, ANCS ’15, pages 5–16, Washington, DC,
USA, 2015. IEEE Computer Society.
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A Proof of Correctness
This appendix contains the proofs of all the lemmas stated in § 3.6.

LEMMA 3.1. Consider a multi-stage switch and a sequence of packets. We can model the packet
processing as if the switch processes one packet at a time.

PROOF. The PISA architecture is a feed-forward architecture, hence it enforces each packet to
traverse all the stages of the pipeline. This ensures that, even if many packets are being processed
simultaneously by the switch, they are processed sequentially, and that a packet 𝑝𝑛, that enters the
switch right after 𝑝𝑛−1, finds all the changes applied by 𝑝𝑛−1. □

LEMMA 3.2. A packet processed at the switch can be either routed to an output port or
recirculated back to the switch.

PROOF. When a packet 𝑝 is processed, 𝑠𝑤 must assign an egress port to 𝑝, although 𝑝 is dropped.
If the assigned port is a recirculation port, the packet re-enters the switch and it is processed again
(as a normal packet). The packet exits the switch otherwise. □
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Ordering. We demonstrate the lemmas regarding packet ordering guarantees within a flow.

LEMMA A.1. A packet 𝑝 ∈ 𝑄𝑛 exits 𝑠𝑤 without recirculating iff 𝑝 performs a successful lookup
on one of the tables, and ORDERING = 0 at ℎ𝑜𝑟𝑑 (T𝑝 ).

PROOF. When a packet 𝑝 ∈ 𝑄𝑛 of a flow 𝑓 enters 𝑠𝑤 , it performs a lookup on 𝑡1 and 𝑡2. (𝑖) If
the lookup fails, 𝑝 reads the value of ORDERING. If the value is 0, 𝑠𝑤 sets NEXT-PACKET ← 0,
PACKET-COUNTER ← 1 and 𝑝.𝑖𝑑𝑥 ← 0. Otherwise, 𝑠𝑤 assigns 𝑝.𝑖𝑑𝑥 ← PACKET-COUNTER and
increments PACKET-COUNTER. 𝑝 is recirculated with 𝑝.𝑜𝑝 ← INSERT (if TRANSIENT-STATES =

SWAPPED) or with 𝑝.𝑜𝑝 ← LOOKUP (if TRANSIENT-STATES > SWAPPED). (𝑖𝑖) If the lookup
succeeds, 𝑝 checks the value of ORDERING. A value greater than 0 implies that some packets
of 𝑓 are recirculating through 𝑠𝑤 , so 𝑠𝑤 increments the value of ORDERING, sets 𝑝.𝑖𝑑𝑥 ←
PACKET-COUNTER and increments PACKET-COUNTER. 𝑝 is recirculated with 𝑝.𝑜𝑝 ← LOOKUP.
A value equals to 0 implies that no other packet of 𝑓 is recirculating, so 𝑝 can exit preserving the
ordering. □

LEMMA 3.3. A recirculated packet 𝑝 exits the switch iff it has read a state from the tables and
𝑝.𝑖𝑑𝑥 = NEXT-PACKET at ℎ𝑜𝑟𝑑 (T𝑝 ). Moreover, the value of NEXT-PACKET is incremented only
when the packet with 𝑝.𝑖𝑑𝑥 = NEXT-PACKET is sent out.

PROOF. A packet 𝑝 ∈ 𝑄𝑟 of a flow 𝑓 that enters 𝑠𝑤 can have four different values of 𝑝.𝑜𝑝.
(𝑖) A packet with 𝑝.𝑜𝑝 = INSERT performs an insertion on 𝑡1 and reads NEXT-PACKET. If
NEXT-PACKET = 𝑝.𝑖𝑑𝑥 , 𝑠𝑤 increments NEXT-PACKET and decrements ORDERING. 𝑝 exits
𝑠𝑤 . Otherwise, 𝑝 is recirculated with 𝑝.𝑜𝑝 ← WAIT. This behaviour does not change even if
𝑝 causes a swap. (𝑖𝑖) A packet with 𝑝.𝑜𝑝 = LOOKUP performs a lookup on 𝑡1 and 𝑡2. If the
lookup fails, 𝑝 is recirculated with 𝑝.𝑜𝑝 ← INSERT (if TRANSIENT-STATES = SWAPPED) or with
𝑝.𝑜𝑝 ← LOOKUP (if SWAPPING > SWAPPED). If the lookup succeeds, 𝑝 checks the value of
NEXT-PACKET. If NEXT-PACKET = 𝑝.𝑖𝑑𝑥 , 𝑠𝑤 increments the value of NEXT-PACKET and 𝑝 exits
𝑠𝑤 . Else 𝑝 is recirculated with 𝑝.𝑜𝑝 ←WAIT. (𝑖𝑖𝑖) A packet in the SWAP state cannot exit 𝑠𝑤 . (𝑖𝑣)
A packet with 𝑝.𝑜𝑝 = WAIT has already taken a state and only checks the value of NEXT-PACKET.
If NEXT-PACKET = 𝑝.𝑖𝑑𝑥 , 𝑠𝑤 increments the value of NEXT-PACKET and 𝑝 exits 𝑠𝑤 . Else 𝑝 is
recirculated with 𝑝.𝑜𝑝 ←WAIT. □

Consistency. We now demonstrate the lemmas that guarantee the consistency of the states read by
packets within a flow.

LEMMA A.2. A value of SWAPPING for a flow 𝑓 greater than the value of SWAPPED for the
same flow 𝑓 implies that an entry for 𝑓 is being swapped from 𝑡2 to 𝑡1.

PROOF. The values of SWAPPING and SWAPPED are updated only by packets that carry an entry
to swap from 𝑡2 to 𝑡1. The SWAPPING entries are increased by 1 when a packet passes through the
bloom filter before the swap. The values of SWAPPED are increased by 1 when it passes through the
bloom filter after the swap. This implies that if SWAPPING > SWAPPED for a flow 𝑓 , there is a swap
packet that has to be processed. □

LEMMA 3.5. A packet 𝑝 cannot overwrite an already-inserted non-expired state for 𝑓𝑝 on 𝑡1.

PROOF. Consider a flow 𝑓𝑝 and a state 𝑠𝑓𝑝 associated to 𝑓𝑝 and inserted into 𝑡1. Suppose that a
packet 𝑝 of 𝑓𝑝 enters 𝑠𝑤 with 𝑝.𝑜𝑝 = INSERT state. At this point, 𝑠𝑤 computes a state for 𝑝 and
overwrites the state 𝑠𝑓𝑝 in 𝑡1. To have 𝑝.𝑜𝑝 = INSERT, 𝑝 in the previous processing must have been
a new packet or a LOOKUP packet. In addition, 𝑝 must have failed the lookup in the hash tables
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and must have read SWAPPING = SWAPPED. Since 𝑠𝑓𝑝 is a state in 𝑡1, this implies that 𝑝 failed the
lookup because 𝑠𝑓𝑝 was recirculating while 𝑝 is processed. But, if 𝑠𝑓𝑝 was still recirculating, for
Lemma A.2 the value of SWAPPING must have been greater than the one of SWAPPED, which is a
contradiction. □

LEMMA 3.6. A packet 𝑝 cannot insert a state for 𝑓𝑝 in 𝑡1 if a non-expired state for 𝑓𝑝 exists in 𝑡2.

PROOF. Consider a flow 𝑓𝑝 and a state 𝑠𝑓𝑝 associated to 𝑓𝑝 and inserted into 𝑡2. Suppose that a
packet 𝑝 of 𝑓𝑝 enters 𝑠𝑤 in the INSERT state. At this point, 𝑠𝑤 computes a state 𝑠1

𝑓𝑝
for 𝑝 and writes

it in 𝑡1. To be in the INSERT state, 𝑝 in the previous processing must have been a new packet
or a packet in the LOOKUP state. In addition, 𝑝 must have failed the lookup in the hash tables
and must have read SWAPPING = SWAPPED. Since 𝑠𝑓𝑝 is a state in 𝑡2, this implies that 𝑝 failed the
lookup because 𝑠𝑓𝑝 was recirculating while the processing of 𝑝. But, if 𝑠𝑓𝑝 was still recirculating, for
Lemma A.2 the value of SWAPPING must have been greater than the one of SWAPPED, which is a
contradiction. □

LEMMA 3.7. Consider a state 𝑠𝑓 associated to a flow 𝑓 , stored in 𝑡1 or 𝑡2. A packet 𝑝𝑛 ∈ 𝑓
matching the state 𝑠𝑓 does not disregard it iff the previous packet 𝑝𝑛−1 had already been sent out.

To guarantee Lemma 3.7, we introduce two additional arrays to store the index of the last packet
that accessed an entry, namely LAST-LOOKUP-T1 and LAST-LOOKUP-T2. Such arrays are accessed
only by packets that performed a successful lookup, and they are conceptually placed after the
cuckoo-hash tables and before the auxiliary data structures.

PROOF. When a packet 𝑝 ∈ 𝑄𝑟 of a flow 𝑓 with 𝑝.𝑜𝑝 = LOOKUP performs a successful lookup
on 𝑡1, it reads the value of LAST-LOOKUP-T1. If LAST-LOOKUP-T1 ≠ 𝑝.𝑖𝑑𝑥 − 1, 𝑝 performs a
lookup on 𝑡2. If LAST-LOOKUP-T1 = 𝑝.𝑖𝑑𝑥 − 1, 𝑝 increments LAST-LOOKUP-T1 and reads the
state from 𝑡1. Then it follows the standard processing, exiting from 𝑠𝑤 when 𝑝.𝑖𝑑𝑥 = NEXT-PACKET.
When a packet 𝑝 ∈ 𝑄𝑟 of a flow 𝑓 with 𝑝.𝑜𝑝 = LOOKUP performs a successful lookup on 𝑡2, it
reads the value of LAST-LOOKUP-T2. If LAST-LOOKUP-T2 ≠ 𝑝.𝑖𝑑𝑥 − 1, 𝑝 is recirculated with
𝑝.𝑜𝑝 ← LOOKUP (not its turn). If LAST-LOOKUP-T2 = 𝑝.𝑖𝑑𝑥 − 1, 𝑝 increments LAST-LOOKUP-
T2 and reads the state from 𝑡2. Then it follows the standard processing, exiting from 𝑠𝑤 when
𝑝.𝑖𝑑𝑥 = NEXT-PACKET. When a packet 𝑝 ∈ 𝑄𝑛 of a flow 𝑓 performs a successful lookup it reads
the value of ORDERING. If ORDERING = 0, 𝑝 exits 𝑠𝑤 . Else, a value of ORDERING > 0 implies
that other packets of 𝑓 are recirculating. To ensure that 𝑝 respects the lookup ordering, 𝑠𝑤 assign
NEXT-PACKET← 𝑝.𝑖𝑑𝑥 and recirculates 𝑝 with 𝑝.𝑜𝑝 ← LOOKUP. In this way, 𝑝 re-performs the
lookup considering the value of LAST-LOOKUP-T1 and LAST-LOOKUP-T2. □

LEMMA 3.8. A packet 𝑝 of a flow 𝑓 can perform an insertion iff there is not an associated state
to 𝑓 in 𝑡1 and 𝑡2, and it is the next packet of 𝑓 to exit (i.e., 𝑝.𝑖𝑑𝑥 = NEXT-PACKET at ℎ𝑜𝑟𝑑 (T𝑝 )).

PROOF. Suppose that a packet 𝑝𝑛 with 𝑝𝑛 .𝑜𝑝 = 𝐼𝑁𝑆𝐸𝑅𝑇 of a flow 𝑓 enters 𝑠𝑤 while a packet 𝑝𝑛−1

of 𝑓 is recirculating with 𝑝𝑛−1.𝑜𝑝 = 𝐿𝑂𝑂𝐾𝑈𝑃 . At this point, 𝑝𝑛 performs an insertion on 𝑡1 before
𝑝𝑛−1. To enter 𝑠𝑤 with 𝑝.𝑜𝑝 = 𝐼𝑁𝑆𝐸𝑅𝑇 , 𝑝𝑛 must have failed a lookup in the previous processing.

If in the previous processing 𝑝𝑛 ∈ 𝑄𝑟 three scenarios are possible. (𝑖) 𝑝𝑛 fails the lookup and finds
SWAPPING > SWAPPED, so 𝑝𝑛 recirculates with 𝑝𝑛 .𝑜𝑝 ← LOOKUP waiting for the swap. (𝑖𝑖) 𝑝𝑛
fails the lookup and finds SWAPPING = SWAPPED & NEXT-PACKET ≠ 𝑝𝑛 .𝑖𝑑𝑥 , so it is recirculated
with 𝑝𝑛 .𝑜𝑝 ← LOOKUP since it is not the next packet that should exit the switch. (𝑖𝑖𝑖) 𝑝𝑛 fails the
lookup and finds SWAPPING = SWAPPED & NEXT-PACKET = 𝑝𝑛 .𝑖𝑑𝑥 , so it is recirculated with
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𝑝𝑛 .𝑜𝑝 ← INSERT since it is the next packet that should exit the switch and the one that has to
perform the insertion. But, if 𝑝𝑛−1 is still recirculating, NEXT-PACKET ≤ 𝑝𝑛−1.𝑖𝑑𝑥 . (Absurd)

If in the previous processing 𝑝𝑛 ∈ 𝑄𝑛 three scenarios are possible. (𝑖) 𝑝𝑛 fails the lookup and
𝑠𝑤 assigns the current PACKET-COUNTER to 𝑝𝑛 and updates the value of PACKET-COUNTER and
ORDERING by 1. 𝑝𝑛 is recirculated to𝑄𝑟 with 𝑝𝑛 .𝑜𝑝 ← LOOKUP. (𝑖𝑖) 𝑝𝑛 fails the lookup and finds
SWAPPING > SWAPPED, so it is recirculated with 𝑝𝑛 .𝑜𝑝 ← LOOKUP waiting for the swap. (𝑖𝑖𝑖)
𝑝𝑛 fails the lookup and finds SWAPPING = SWAPPED & ORDERING = 0, so, since 𝑝𝑛 is the only
packet of the flow in 𝑠𝑤 , it is recirculated to 𝑄𝑟 with 𝑝𝑛 .𝑜𝑝 ← INSERT. However, if 𝑝𝑛−1 is still
recirculating, ORDERING > 0. (Absurd) □

Termination. We demonstrate the lemmas that guarantee the termination property.

LEMMA 3.10. A packet 𝑝 of a flow 𝑓 can perform an insertion iff there is not an associated state
to 𝑓 in 𝑡1 and 𝑡2, and it is the next packet of 𝑓 to exit (i.e., 𝑝.𝑖𝑑𝑥 = NEXT-PACKET at ℎ𝑜𝑟𝑑 (T𝑝 )).

PROOF. Consider a packet 𝑝𝑖 of a flow 𝑓 with 𝑝.𝑜𝑝 = WAIT. 𝑝𝑖 is recirculating in 𝑠𝑤 since
NEXT-PACKET ≠ 𝑝𝑖 .𝑖𝑑𝑥 . If so, each packet 𝑝𝑖−𝑘 , with 𝑝𝑖−𝑘 .𝑖𝑑𝑥 ≥ NEXT-PACKET & 1 ≤ 𝑘 ≤ 𝑖, is
also recirculating. Suppose that 𝑘 = 𝑖, this implies that 𝑝0, the first packet of 𝑓 , is recirculating. Hence,
NEXT-PACKET = 0 by construction. Consequently, 𝑝0 will exit 𝑠𝑤 the next time it is processed, and
it will also increase NEXT-PACKET by 1, causing the exiting of 𝑝1. This process is repeated until 𝑝𝑖

exits from 𝑠𝑤 . □

LEMMA 3.11. A packet 𝑝 with 𝑝.𝑜𝑝 = LOOKUP, that failed the lookup on both tables and finds
SWAPPING > SWAPPED, continues to recirculate until it reads (inserts) a state from (into) 𝑡1 or 𝑡2,
then it always exits the switch.

PROOF. Consider that a packet 𝑝 of a flow 𝑓𝑝 fails a lookup and finds SWAPPING > SWAPPED.
After re-entering 𝑠𝑤 in 𝑄𝑟 with 𝑝.𝑜𝑝 = LOOKUP, four conditions are possible: (𝑖) the lookup
succeeds and 𝑝 is recirculated with 𝑝.𝑜𝑝 ← WAIT. For Lemma 3.10, 𝑝 exits 𝑠𝑤 ; (𝑖𝑖) 𝑝 fails the
lookup and SWAPPING = SWAPPED. 𝑝 recirculates with 𝑝.𝑜𝑝 ← INSERT, re-enters 𝑠𝑤 from 𝑄𝑟 ,
performs an insertion on 𝑡1 and recirculates with 𝑝.𝑜𝑝 ←WAIT. For Lemma 3.10, 𝑝 exits 𝑠𝑤 ; (𝑖𝑖𝑖)
𝑝 fails a lookup and finds SWAPPING > SWAPPED re-entering the initial state. If so, the entry 𝑒𝑓𝑝
associated to 𝑓𝑝 is being swapped while 𝑝 is performing the lookup. This condition can repeat until
the swap of 𝑒𝑓𝑝 succeeds, leading to the second case, or until 𝑒𝑓𝑝 expires and is dropped. This implies
that 𝑒𝑓𝑝 does not increase SWAPPING and hence 𝑝 will read SWAPPING = SWAPPED, leading to the
third case; (𝑖𝑣) the lookup fails since 𝑝 finds a value of the LAST-LOOKUP entry different from
𝑝.𝑖𝑑𝑥 − 1, so 𝑝 is recirculated with 𝑝.𝑜𝑝 ← LOOKUP waiting for its turn. □
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