
8

Network Monitoring on Multi-Pipe Switches

MARCO CHIESA
∗
, KTH Royal Institute of Technology, Sweden

FÁBIO L. VERDI
†
, Federal University of São Carlos, Brazil

Programmable switches have been widely used to design network monitoring solutions that operate in the
fast data-plane level, e.g., detecting heavy hitters, super-spreaders, computing flow size distributions and
their entropy. Many existing works on networking monitoring assume switches deploy a single memory
that is accessible by each processed packet. However, high-speed ASIC switches increasingly deploy multiple

independent pipes, each equipped with its own independent memory that cannot be accessed by other pipes.
In this work, we initiate the study of deploying existing heavy-hitter data-plane monitoring solutions

on multi-pipe switches where packets of a “flow” may spread over multiple pipes, i.e., stored into distinct
memories. We first quantify the accuracy degradation due to splitting a monitoring data structure across
multiple pipes (e.g., up to 3000xworse flow-size estimation average error).We then present PipeCache, a system
that adapts existing data-plane mechanisms to multi-pipe switches by carefully storing all the monitoring
information of each traffic class into exactly one specific pipe (as opposed to replicate the information on
multiple pipes). PipeCache relies on the idea of briefly storing monitoring information into a per-pipe cache
and then piggybacking this information onto existing data packets to the correct pipe entirely at data-plane
speed. We implement PipeCache on ASIC switches and we evaluate it using a real-world trace. We show that
existing data-plane mechanisms achieves accuracy levels and memory requirements similar to single-pipe
deployments when augmented with PipeCache (i.e., up to 16x lower memory requirements).

CCS Concepts: • Networks→ Network measurement; Network monitoring; Bridges and switches.

Additional Key Words and Phrases: multi-pipe switches; ASIC switches; network monitoring; P4

ACM Reference Format:

Marco Chiesa and Fábio L. Verdi. 2023. Network Monitoring on Multi-Pipe Switches. Proc. ACM Meas. Anal.

Comput. Syst. 7, 1, Article 8 (March 2023), 31 pages. https://doi.org/10.1145/3579321
1 INTRODUCTION

Network monitoring is an indispensable component of today’s networks. Network operators rely
on monitoring systems to collect key statistics about the underlying traffic, optimize network
performance, detect misconfigurations, attacks, and beyond. Three key requirements of today’s
monitoring solutions are: accuracy, i.e., the ability to correctly identify network events, low memory

overheads, i.e., minimizing the amount of resources used on a switch, and reactiveness, i.e., the
time required to detect an event. We discuss the rich body of literature that has long explored the
trade-off among these requirements [11, 28, 32, 41, 45, 53, 56, 63, 71, 73–75].
Traditional monitoring approaches rely on sampling packets from the data-plane of a switch

and updating per-flow counters in the control-plane (e.g., NetFlow [32]). These approaches trade
lower memory overheads in the data-plane (as control-plane memory is abundant and cheap) at
the price of both lower accuracy (as packets are sampled) and higher computational & reactiveness
overheads due to high sampling ratios.

Authors’ addresses: Marco Chiesa, KTH Royal Institute of Technology, Kistagången 16, Kista, Sweden, 19139; Fábio L. Verdi,
Federal University of São Carlos, Rod. João Leme dos Santos, km 110, Sorocaba, Brazil, 18052-780.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2476-1249/2023/3-ART8
https://doi.org/10.1145/3579321

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

https://doi.org/10.1145/3579321
https://doi.org/10.1145/3579321

8:2 Marco Chiesa and Fábio L. Verdi

In recent years, researchers have leveraged new advancements in programmable ASIC data-
planes to cleverly keep and update monitoring data structures entirely in the data-plane [63, 73].
These data-plane approaches monitor each single packet (i.e., no sampling) and therefore achieve
higher accuracy than traditional approaches at the cost of higher data-plane on-chip memory
utilization, which is renowned to be a scarce and expensive resource compared to control-plane
memory [14]. We focus on these data-plane approaches in this paper due to their higher accuracy.

An emerging aspect of ASIC data-planes is that high-speed switches increasingly rely on paral-
lelized packet processing pipe architectures due to slowing in Dennard’s and Moore’s laws [16, 39].
Each pipe interconnects a subset of the ports of the switch to a crossbar element and it only pro-
cesses packets received/sent from/to a port on the switch. Importantly for this work, each pipe
contains dedicated memory resources, i.e., a pipe cannot access the memory of another pipe [37].
Today’s switches may contain up to 16 parallel packet processing pipes [16].

In this work, we initiate the study of the problem of deploying existing data-plane-based moni-
toring solutions on multi-pipe switches. We focus on monitoring data structures deployed on ASIC
switches and do not address data structures deployed on external devices such as SmartNICs or
CPUs. Existing monitoring solutions store statistics about the forwarded traffic at different granu-
larities, which we call monitored traffic classes, depending on the specific use case. For instance,
network operators monitor each single TCP connection for rerouting large flows [3] whereas they
monitor all traffic from each source IP addresses for super spreader detection [18].
We identify three main problems with multi-pipe deployments that result in lowered accuracy

and reactiveness compared to an ideal single-pipe deployment (using the same amount of memory):
• Inefficient memory utilization. In a multi-pipe deployment, all the monitoring data structures are
replicated across all pipes. However, packets belonging to the same monitored traffic class may
arrive and leave the switch from multiple pipes, for instance, when monitoring source IPs or
using a per-packet load balancer (e.g., Flowlet [65], NDP [27]). In these cases, packets of the same
monitored traffic class will spread over all these pipes, resulting in additional memory usage to
store information about each traffic class.

• Strict per-pipe memory resources. Consider an 8-pipe switching chip where each pipe has only
space to store statistics for 1 k flows. If there are 8 k incoming flows and these are non-uniformly
spread across pipes, some flows will not be monitored. Conversely, in a single-pipe deployment,
all the 8 k flows would be monitored.

• Slow or inaccurate detection of network events.When packets of the same monitored traffic class
spread over multiple pipes, it becomes harder to detect a network event at data-plane speed as
switches rely on internal CPUs to aggregate statistics across multiple pipes. Fetching arrays with
hundreds of thousands of elements on the CPU of a switch may take up to seconds [55]. Delays
in, for instance, detecting heavy hitters impact the ability to de-prioritize large flows, which
leads to performance degradation for latency-sensitive flows with microsecond-level latency
requirements (e.g., high-priority RPCs) [5, 47].
In this work, we first quantify the impact of the above problems on two existing state-of-the-art

data-plane monitoring solutions, i.e., FCM-Sketch [63] and Elastic-Sketch [73]. We select these two
mechanisms because they are both lightweights in terms of memory requirements and they can
both be used to implement many monitoring tasks (e.g., heavy-hitter detection, flow size entropy
estimation, super-spreader detection). Our main results using real-world traces show that a naïve
16-pipe deployment of Elastic-Sketch or FCM-Sketch requires up to 8.5x additional on-chip memory

to achieve a similar level of accuracy of a single-pipe deployment.
We therefore design a novel mechanism, called PipeCache, to adapt existing data-plane monitor-

ing solutions to multi-pipe switch architectures. Our key idea is to deploy an existing monitoring
solution on each pipe, partition traffic classes across all the available pipes, and store all monitoring

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:3

information about each monitored traffic class in the assigned pipe, i.e., monitoring information
about one monitored traffic class is not spread among pipes. To achieve this goal, we augment
existing data-plane monitoring solutions with a cache to temporarily store monitoring information
in a pipe before piggybacking it onto any existing packet that must be forwarded to the pipe where
the cached state should be stored. Building PipeCache entails addressing one main challenge:
keeping the cache small so as to achieve close-to-single-pipe accuracy and memory requirements.
A large cache may outweigh the accuracy gains obtained by storing information about a traffic
class in one location. Conversely, a small cache risks filling up too quickly, losing monitoring infor-
mation, and lowering accuracy. We rely on three approaches in PipeCache to keep the cache small:
i) piggybacking as many packets as possible given hardware constraints, ii) cloning a specific num-
ber of ad-hoc packets to drain the cache, and iii) relying on a fallback mechanism when the cache
cannot be drained with the given specific number of ad-hoc packets. Creating and recirculating
ad-hoc packets is a controllable overhead in PipeCache: the fallback mechanism kicks in whenever
the recirculation overhead goes beyond a predefined threshold. Moreover, switches are equipped
with internal recirculation ports that avoid consuming the bandwidth available on the external
ports connected to the switch [38].

105 106 107

amount of chip memory [bit]

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

7x 2x
Pi

pe
C

ac
he

+
ES

El
as

tic
Sk

et
ch

(E
S)

Pi
pe

Ca
ch

e+
FC

M

FC
M

Fig. 1. PipeCache performance.

We evaluate PipeCache using existing
real-world traffic traces augmenting both
FCM-Sketch [63], Elastic-Sketch (ES) [73], Hy-
perLogLog [24], MRAC [46], Beaucoup [18],
and FlowLens [6] for different monitoring tasks:
heavy-hitter detection, super-spreader detec-
tion, and entropy estimation of the flow distri-
bution. Figure 1 shows that PipeCache reduces
the memory requirements to achieve a certain
accuracy level (i.e., an F1-score of 0.9 for heavy-
hitter detection) by up to 7x and 2x compared
to a baseline deployment of Elastic-Sketch and FCM-Sketch on a 16-pipe switch, respectively. More-
over, we show in our evaluation (not in the figure) that PipeCache allows existing monitoring
mechanisms to achieve close-to-single-pipe accuracy and memory requirements. We also show
that cloning packets only results in minimal bandwidth overheads and that our fallback mechanism
preserves information about packets that do not fit in the cache. Finally, we show that PipeCache
is not specific to heavy-hitter detection, showing similar memory gains for a different monitoring
task: super-spreader detection.

We summarize our contributions as:
• To the best of our knowledge, this is the first study to quantify the impact of deploying existing
heavy-hitter monitoring data-plane solutions on today’s high-speed multi-pipe switches. We
highlight three main problems of deploying today’s monitoring solutions on multi-pipe switches.

• We show that the on-chip memory requirements for multi-pipe deployment are significantly
higher than with a single pipe, i.e., up to 8.5x additional memory.

• A novel and general system, PipeCache, that temporarily stores and quickly moves monitoring
information of each traffic class to its corresponding storage pipe.

• An implementation of PipeCache on a programmable ASIC switch.
• PipeCache reduces memory between 6𝑥 and 25x compared to pipe-oblivious deployments for
computing heavy hitters, super spreaders, and flow-size and packet-length distributions.

• Showing that PipeCache can augment any existing monitoring work is left as future work.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:4 Marco Chiesa and Fábio L. Verdi

2 MOTIVATION AND TRAFFIC ANALYSIS

In this section, we first introduce the architectural switch model based on multiple pipes. We
then investigate the impact of deploying existing monitoring solutions across multiple pipes and
we compare them to an ideal architecture based on a single pipe. Our results show that, under
identical memory constraints, deploying a monitoring solution on multiple pipes may result in up
to 3000𝑥 higher average error for the heavy-hitter size estimation task (compared to a single-pipe
deployment). Similarly, a 16-pipe deployment may require up to 8.5𝑥 additional memory than a
single-pipe deployment for achieving a close-to-zero error estimation.

2.1 Multi-pipe switch architectures

High-throughput multi-pipe switch architectures. Similarly to multi-core CPU architectures,
switch vendors deploy multiple packet processing pipes (or packet processing engines) to sustain
higher throughput rates. In fact, scaling throughput by increasing the clock frequency of each
individual pipe results in excessive power consumption and increased latency [16]. We show a
simplified representation of a switch architecture chip with two pipes in Figure 2.

Crossbar
switch

Pipe 1

Pipe 2

Ingress pipeline

Ingress pipeline

Egress pipeline

Egress pipelineIn
pu

t p
or

ts

O
ut

pu
t p

or
ts

Fig. 2. Overview of a multi-pipe switch architecture.

2012 2014 2016 2018 2020 2022

Year

0

20

Th
ro

ug
hp

ut
[T

bp
s]

tomahawk tofino

0

10

20

N
um

be
ro

fp
ip

estomahawk tofino

Fig. 3. Throughput and number of pipes trends.

A pipe connects a subset of the switch input/output ports to a crossbar entity, which is responsible
for moving packets across pipes. Each pipe contains a certain amount of memory and computational
resources (not shown in the figure), including SRAM, TCAM, and ALUs. These resources can be
used to store any information needed to process packets according to an operator-configured packet
processing pipeline. Each pipe executes two packet processing pipelines called the ingress and
the egress pipelines. A switch executes the ingress pipeline before the packet reaches the crossbar
entity and it executes the egress pipeline after it.
There is one constraint of multi-pipe switches that is key for this work [38]: packets processed

through one pipe can only read/write/update memory in that specific pipe. Accessing memory on a
different pipe at terabits-per-second speeds requires supporting concurrent data structures across
pipes, which is a complex operation that may reduce the switch throughput because of the higher
memory access latency of a shared memory [40, 72].
The number of pipes deployed on high-throughput switches has been steadily growing.

We investigate current trends in the switching chip design industry with respect to multi-pipe
deployments. Figure 3 shows on the left y-axis (bluish lines) the switch throughput of different
generations of Broadcom Tomahawk (circle marks) and Intel Tofino switches (cross marks).

For both these vendors, throughput has doubled every two years reaching 25.6 Tbps in 2019 and
2021, respectively. Doubling the throughput of a single switch reduces power consumption in a
data center network by a factor of 6x [36]. On the right y-axis of Figure 3, we show the number of
pipes deployed on different generations of the same switches. We only show data that is publicly
available and not covered by NDAs. Broadcom Tomahawk chips doubled their number of pipes
between 2015 and 2017, from 8 to 16 pipes [15, 16] while Intel Tofino3 doubled the number of pipes
from Tofino1, moving from 4 to 8 pipes[26, 39].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:5

2.2 Deployment Issues

Deployment of existing data-plane network monitoring solutions on multi-pipe switches.

With the emergence of programmable high-speed ASIC switches, researchers and practitioners
have devised a large plethora of highly sophisticated data-plane network monitoring solutions
running at data-plane speeds [11, 28, 41, 45, 53, 57, 63, 71, 73–75]. All these solutions operate at the
level of a stream of packets that updates data structures in a single memory resource. However, on
multi-pipe switch, packets belonging to the same monitored traffic class may traverse different
pipes as we show in this section.

We first define more formally a monitored traffic class as the set of packets that share an identical
subset of packet header values. The subset of packet header depends on the use case and define the
granularity of the monitored traffic class. For instance, a monitored traffic class may be defined as
all the packets with the same source IP address or all the packets with the same TCP/IP tuple (i.e.,
the same TCP connection). In both these two cases, traffic belonging to the same monitored class
may spread across different pipes because packets belonging to the same traffic class may arrive
and leave a switch from different ports. For instance, packets that have the same IP source address
may have different destination IP addresses. Since forwarding is performed based on the destination
address, packets sharing the same source IP address may arrive and leave a switch from different
pipes. Even when a traffic class is defined at the granularity of a TCP connection, packets belonging
to the same TCP connection may be spread by a switch performing per-packet or per-burst load
balancing (e.g., NDP [27], LetItFlow [65], Drill [25], Conga [4], HULA [43], StarDust [80]). In both
cases, due to the lack of a shared inter-pipe memory, the monitoring statistics would be stored on
different locations (i.e., different pipes). We now illustrate the implications of the above problem
with three problems accompanied by examples. In all the following examples, it is irrelevant how
a (monitored) traffic class is defined. It can be defined as a single flow, a source IP address, or
something different. We will simply refer to a generic traffic class (or a flow). In the examples, we
focus on the flow size estimation task.
Problem #1: Inefficient memory utilization due to spreading of monitoring information.

The first problem with a multi-pipe deployment is that the state associated with the same monitored
traffic class may spread overmultiple pipes, fundamentally reducing the amount of available memory
to store monitoring information. For example, consider a traffic class to be all packets with the
same IP source address. Assume we use a simple array data structure to store the number of packets
from each IP source address by indexing the entry in the array using the hash of the IP source
address (as it is common in existing super-spreader sketch-based mechanisms [63]). Since flows
with the same IP source address may be forwarded on arbitrary output ports, the traffic statistics
associated with one traffic class would spread over all the existing pipes. This means that the state
for storing one traffic class on a switch must be replicated over all pipes which, ultimately, reduces
the available memory on the switch to store traffic statistics.

Pipe 1

2k
0

5k + 5
0

H1(IPsrc)

Pipe 2

5k
6k + 5

0

H2(IPsrc)

0

Fig. 4. Inefficient memory usage example.

Consider the example in Figure 4 where the switch
spreads the flows associated with three IP source ad-
dresses over two pipes. Without loss of generality, we
assume that the array monitoring data structure is de-
ployed on the egress packet processing pipeline. The first
(red dashed) traffic class consists of 10 k packets, the sec-
ond (blue solid) traffic class consists of 10 packets, and the
third (green dotted) traffic class consists of 6 k packets.
The switch equally splits the packets of the red and blue
traffic classes between the two egress pipes while it splits

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:6 Marco Chiesa and Fábio L. Verdi

the green flow with a 1:3 ratio between the two pipes. The switch uses two different hashes 𝐻1 and
𝐻2 to access the arrays in the two pipes to reduce collisions. Assume that the traffic of the blue and
red (green and blue) IP addresses collide on the array in the first (second) pipe and does not collide
on the second (first) pipe. To estimate the size of a traffic class, a natural approach would be to
iterate over all pipes and sum up all the array entries where an IP address hashes to. This approach
leads, however, to a large incorrect estimate of the blue traffic class whose size is estimated at 11 k
packets instead of 10. The key problem is that information of one flow is spread on multiple pipes,
increasing collisions, and effectively reducing the available memory to store traffic statistics.
Problem #2: Strict per-pipe memory resources. Our second example considers a network
monitoring data structure that stores exact per-flow packet counters. Consider the same 2-pipe
switch of Figure 4 where each pipe can store up to 4 flow entries and there are 8 incoming flows. If
the switch forwards 2 flows to Pipe 1 and 6 flows to Pipe 2, then the switch will not have space to
store state for the two extra flows forwarded to Pipe 2. The higher the traffic forwarding imbalance,
the worst the utilization of the memory. The key problem is that a switch is constrained within the
memory of each pipe as opposed to leveraging a shared memory across all pipes.
Problem #3: Slow/inaccurate detection of network events. An advantage of data-plane-based
network monitoring is that the data-plane can either immediately trigger a modification of the
forwarding state or trigger a notification to the control-plane about an observed network event. For
instance, many existing systems keep a counter for each traffic class and trigger an action when a
large traffic class is detected [3, 42]. In these works, the control-plane fetches all the data-plane
data structures to identify large traffic classes, which has been shown to take up to seconds [55].
Ideally, when a counter reaches a pre-configured threshold, the data-plane should either modify the
forwarding in the data-plane (e.g., de-prioritizing a traffic class [5]) or report the traffic class to the
controller [42, 48]. Monitoring and reacting entirely in the data-plane leads to faster reaction times
as packets are processed in hundreds of nanoseconds. Unfortunately, data-plane monitoring and
detection only works as long as monitoring information about a traffic class is stored on a single
pipe. When the statistics are spread over multiple pipes, several problems arise. If one applies the
same single-pipe threshold to each pipe, there is a risk of not identifying some events as the packets
triggering that event have spread over multiple pipes. For instance, in Figure 4, if the threshold is
set to 10 k packets, then none of the pipes identifies the red traffic class as the per-pipe counters
are ∼ 5 k. Instead, one can reduce the threshold proportionally to the number of pipes, e.g., a 10 k
threshold translates to a 5 k per-pipe threshold on a 2-pipe switch. This mechanism catches all
the large traffic classes of a single-pipe deployment, but it also erroneously catches a significant
amount of small traffic classes that go above the threshold on some pipes (because packets may
spread non-uniformly). For instance, in Figure 4, Pipe 2 erroneously detects the green traffic class
as a large class as it receives 6 k packets in Pipe 1.
2.3 Traffic Analysis

To quantify the accuracy degradation due to the above problems, we simulate both Elastic-Sketch [73]
and FCM-Sketch [63]. We first provide a minimal background on these mechanisms and we then
analyze them. In this section, we focus on detecting heavy hitters, i.e., traffic classes sending ≥ 10 k
packets. Heavy-hitter detection is key in many use cases,e.g., traffic engineering/prioritization [5],
capacity planning [23], anomaly identification [49], DDoS detection [68], and more. We refer the
reader to Appendix F for additional background information on detecting heavy hitters. In this
subsection, we define a traffic class as a source IP address as in the FCM-Sketch work [63].
Background on Elastic-Sketch [73]. Elastic-Sketch contains a “heavy” and a “light” part. The
“heavy” part of Elastic-Sketch consists of a set of array data structures that hold the exact traffic
class identifier, the number of packets, and a “vote” metric that is used to evict entries from the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:7

105 106 107

amount of chip memory [bit]

0.0

0.5

1.0

F1
-s

co
re

Number of pipes: 1 2 4 8 16

Fig. 5. Impact of multi-pipe deployment on the F1-

score of an Elastic-Sketch monitoring data structure.

105 106 107

amount of chip memory [bit]

10−2

100

102

104

A
ve

ra
ge

R
el

at
iv

e
E

rr
or

(A
R

E
)

30
00

x

1.7x

Number of pipes: 1
2
4
8
16

Fig. 6. Impact of multi-pipe deployment on the ARE

obtained with Elastic-Sketch.

heavy part. The light part is a Count-Min sketch that stores traffic statistics for traffic classes that
are not in the heavy part. To query the size of a traffic class, Elastic-Sketch sums up the counters of
that traffic class from the heavy and the light parts. Since the heavy part contains the exact traffic
class identifier, errors in the estimate only arise because of the light part. This mechanism keeps
large traffic classes in the heavy part, limiting collisions between small and large traffic classes.
Background on FCM-Sketch [63]. FCM-Sketch has three levels of Count-Min sketches with
decreasing the number of elements and increasing element size (e.g., the 1𝑠𝑡 level contains 219
8-bit entries while the 3𝑟𝑑 level contains 213 32-bit entries). A packet belonging to one traffic class
increases an entry by 1 at level 𝑖 only if the corresponding entry of the indexed element at level
𝑖 − 1 has reached the maximum value (e.g., an entry at level 2 is increased by 1 only if the traffic
class entry at the level 1 is 255). To query the size of a traffic class, one iterates from the first level
and sums up the values until it reaches a level whose value is not the maximum one for that level.
FCM-Sketch distills large from small traffic classes as only large classes appear in higher levels.
The accuracy of existing monitoring solutions quickly degrades with more pipes. We
show through simulations that the higher the number of pipes on a switch, the lower the accuracy
of a data-plane monitoring solution. We only show graph results for Elastic-Sketch (because of its
lower memory requirements) and we mention summarized results for FCM-Sketch (whose graphs
can be found in App. A). We implement Elastic-Sketch using a heavy part consisting of two array
data structures and one light part consisting of a Count-Min sketch with a single hash (as suggested
in the original paper for the hardware implementation). We deploy Elastic-Sketch on multiple
egress pipes and estimate the size of a traffic class by summing up the per-pipe size estimates. We
evaluate Elastic-Sketch using the CAIDA Equinix-NYC data monitor [17] from 2019 containing
21M packets, ∼ 500 k distinct IP source addresses, of which 166 carry more than 10K packets. We
spread packets uniformly across pipes using a connection-consistent ECMP mechanism [19], which
means connections with the same source IP address will be spread across the egress pipes.

Figure 5 shows the impact of a multi-pipe deployment on the F1-score (y-axis) of a heavy-hitter
detector (with a threshold set at 10 k packets) with respect to the amount of on-chip memory used.
The F1-score is defined as 2𝑡𝑝

2𝑡𝑝+2𝑝+𝑓 𝑛 where 𝑡𝑝 , 𝑓 𝑝 , and 𝑓 𝑛 are the number of true positives, false
positives, and false negatives, resp. An F1-score of one (zero) indicates high (low) accuracy. Our
results show that on a 16-pipe deployment, it takes roughly 10x more memory to achieve the same
F1-score of a single-pipe deployment. The results with fewer pipes also suggest that when ECMP
spreads traffic on just two, four, or eight pipes, we still incur accuracy degradation.

Figure 6 shows the Average Relative Error (ARE) of the traffic class estimation for the reported
heavy hitters, i.e.,

∑
𝑡𝑐∈𝐻𝐻

𝑡𝑐∗−𝑡𝑐′
𝑡𝑐∗ , where 𝐻𝐻 is the set of reported heavy hitters, 𝑡𝑐∗ is the real size

of traffic class 𝑡𝑐 , and 𝑡𝑐 ′ is the estimated traffic class size.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:8 Marco Chiesa and Fábio L. Verdi

0.0 0.2 0.4 0.6 0.8 1.0

Per-pipe HH detection threshold coefficient

0

50

100

150

N
um

be
ro

ff
al

se
ne

ga
tiv

es

2 4 8 16

100

101

102

103

104

N
um

be
ro

ff
al

se
po

si
tiv

es

Number of pipes:
2 4 8 16

Fig. 7. Impact on Elastic-Sketch of using different

per-pipe thresholds on the number of false negative

and false positives for different number of pipes.

100 101

Level of imbalance

100

102

104

N
um

be
ro

ff
al

se
po

si
tiv

es

10
x

#pipes: 1 8 16

Fig. 8. Impact of traffic imbalances on the number

of false positives with Elastic-Sketch.

Our results show that by using the same amount of memory, a single-pipe deployment reduces
ARE by a factor of up to 3000x (i.e., from a large ARE of 1.5×102 → 15 000% to a much lower ARE of
0.05 → 5%). With a target ARE of 0.05 → 5%, we observe that it takes 1.7x additional chip memory
every time we double the number of pipes on the switch. With the FCM-Sketch mechanism, we also
observe some accuracy degradation. More specifically, it takes roughly ∼ 4x additional memory to
achieve an F1-score above 0.9 on a 16-pipe switch. Moreover, using the same amount of memory, a
single-pipe deployment reduces ARE by up to a 1000x factor compared to a 16-pipe switch.
Multi-pipe deployments make it harder to quickly detect heavy hitters. We showed in
Section 2.2 that when a monitoring solution spreads over multiple pipes, it may be harder to
quickly detect a network event such as a heavy hitter. Based on the same aforementioned CAIDA
trace and Elastic-Sketch implementation, we measure in Figure 7 the number of false negatives
(left y-axis, bluish lines) and false positives (right y-axis, reddish lines) using a different per-pipe
threshold coefficient (x-axis) to compute the heavy-hitter threshold. This per-pipe coefficient is
used to derive the per-pipe threshold. For instance, if the threshold on an 8-pipe switch is 10K
packets, a coefficient of 0.125 means each pipe reports a heavy hitter if the number of packets of a
traffic class in any pipe exceeds 1 250 packets. Our results show that a substantial amount of either
false positives or false negatives arise, e.g., with 4 pipes and a coefficient of 0.6, we measure > 60
false negatives (out of 166 real heavy hitters) and > 50 false positives. Conversely, a single-pipe
deployment correctly identifies all and only the correct heavy hitters (not shown in the figure). With
a coefficient of 1.0, we have zero false positives (shown as a vertical red line). We observe identical
results for FCM-Sketch. The reason why Elastic-Sketch and FCM-Sketch perform similarly is that
both mechanisms achieve an F1-score of 1 in a single-pipe deployment. The false negatives and
positives are only due to the per-pipe threshold mechanism and how traffic spreads across pipes.
Traffic imbalances degrade accuracy in multi-pipe switches. We showed in Problem 2 of
Section 2.2 a case where a traffic imbalance prevented storing state for two flows. We now quantify
this accuracy drop by configuring each heavy part array of Elastic-Sketch with 213 elements. We
generate an imbalance using weighted ECMP [79]. Figure 8 shows the number of false positives
(y-axis) in single- and multi-pipe deployment as we vary the level of imbalance across pipes (x-axis).
An imbalance level of 𝑥 means that some pipes (i.e., half of them in this experiment) receive up to
𝑥 % less traffic than some other pipes. We see that the higher the number of pipes, the higher the
number of false positives, up to 10x more false positives with 16 pipes and an imbalance of 31. We
observe similar results for FCM-Sketch.
Other monitoring tasks. In this subsection, we focused on heavy-hitter detection, which is a key
building block for different monitoring tasks [11, 29, 45, 53, 61, 63, 71, 73, 74]. In our evaluation
section, we show a similar accuracy degradation for a variety of additional monitoring tasks.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:9

In the rest of this paper, we tackle the following question:
“Can we devise a mechanism that supports existing monitoring solutions and achieves the accuracy

and memory requirements of a single-pipe deployment on a multi-pipe switch?”

3 SYSTEM DESIGN

We now present a novel approach, called PipeCache, to reduce the overheads of deploying existing
data-plane network monitoring solutions onto multi-pipe switches. The main goal of PipeCache is
to achieve both the accuracy and memory requirements of a single-pipe deployment and support
general existing monitoring solutions. We first present the general design of PipeCache (without
considering hardware implementation constraints) and then present a hardware-aware design.

3.1 Overview

Design overview. Our system relies on a simple idea: storing all statistics information about each
traffic class in one single pipe. To achieve this goal, we deploy existing monitoring data structures
on the egress pipes and we assign each single traffic class to one egress pipe, i.e., the monitoring
information of each traffic class is stored only inside one egress pipe, which we call the monitoring

pipe of that traffic class. This mapping can be realized using hash-based mechanisms that hash the
identifier of a traffic class and use it to select an egress pipe. We show a high-level representation
in Figure 9 where, for instance, the Blue traffic class is stored only on Pipe 1. The challenge is to
update the monitoring information in the monitoring pipes while forwarding packets according to
their forwarding state installed on the device. Packets belonging to the same traffic class may be
forwarded on different egress pipes, making it difficult to aggregate information on a single pipe.
For this reason, we introduce a cache data structure in the ingress pipe to briefly store information
about those packets that must be forwarded to an egress pipe that is not the monitoring pipe of the
traffic class of these packets. To transfer information from the cache to the correct monitoring pipes,
we piggyback any information stored in the cache on existing data packets that are forwarded to
the monitoring pipe of the cached elements.

Pipe n

EgressIngress

Cache
Existing monitoring data structures Pipe 1

El
as

tic
 S

ke
tc

h
he

av
y

pa
rt

3

5

10

2
7
4

5
1
3

6
2
1

0
6
7

Cache

X-BarCoarse-grained stats

Coarse-grained stats El
as

tic
 S

ke
tc

h
he

av
y

pa
rt

El
as

tic
 S

ke
tc

h
lig

ht
 p

ar
t

El
as

tic
 S

ke
tc

h
lig

ht
 p

ar
t

Fig. 9. Overview of PipeCache. Each monitored traffic class is stored in one egress pipe, called the monitoring

pipe of the traffic class. For instance, the Red and Green traffic classes are stored in Pipe 𝑛 while the Blue

traffic class is in Pipe 1. A cache in each ingress pipe temporarily stores monitoring information for any packet

that has been forwarded to an egress pipe that was not their corresponding monitoring pipe.

Simplified example. Consider the example of Figure 9 depicting a switch with 𝑛 pipes. The egress
pipes store the data structures needed by an Elastic-Sketch-like monitoring approach [73] but it
could be a different mechanism. We refer the reader to Section 2 for background on Elastic-Sketch.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:10 Marco Chiesa and Fábio L. Verdi

The heavy part of Elastic-Sketch is a key-value-like data structure while the light part is a Count-
Min sketch. PipeCache maps each traffic class to an egress pipe (using the hash of the traffic class
identifier), e.g., the monitoring information about the blue traffic class is stored in Pipe 1 while
information about the red and green traffic classes is stored on Pipe𝑛. PipeCache deploys a cache
on each ingress pipe. We do not store the entire packet in the cache but only any information
needed to update the monitoring data structures (e.g., the traffic class identifier or its hashes). In
this example, our cache simply stores a list of traffic class identifiers, one for each packet that has
been added to the cache. The cache of Pipe 1 currently stores information about three traffic classes
(red, green, blue) while Pipe𝑛 only for one traffic class (blue). This information has been added
into the cache whenever (red, green, or blue) packets were routed by the switch to a pipe that was
not their monitoring pipe. For instance, assume that a packet belonging to the blue traffic class
arrives at Pipe 1 and must be forwarded to Pipe𝑛. PipeCache first checks whether the monitoring
pipe of the blue traffic class is Pipe𝑛. As this is not the case, PipeCache caches the identifier of the
blue packet, it fetches from the cache any traffic class identifier that belongs to traffic classes stored
in Pipe𝑛, and it piggybacks them as packet metadata (e.g., the green and red identifiers). When the
packet arrives at the egress pipe of Pipe𝑛, PipeCache updates the monitoring information with
the carried metadata, i.e., it updates the counter of the green (red) traffic class by 2 (1) units.

3.2 Design

The main challenge of PipeCache is to keep the cache data structure small. A large cache would
deliver close-to-single-pipe accuracy yet at a very high memory cost due to the large cache. If these
costs are too high, then traditional approaches would perform similarly if not even better than
PipeCache. We describe three approaches that we use to keep the cache data structure as small as
possible while preserving high heavy-hitter detection accuracy.
Approach #1: Piggybacking metadata. The first approach has been introduced in the previous
overview of PipeCache. It boils down to piggybacking cached information on top of existing
data-plane traffic to move it to the correct monitoring pipe. There is one important trade-off that
we need to keep into account in the design of PipeCache. On the one hand, the more metadata we
piggyback on a packet, the quicker a cache will be drained, supporting our goal to have a small
cache. On the other hand, the more metadata we piggyback on a packet, the higher the cost in terms
of switch resources needed to move this information to the egress pipe (more details in Section 3.3).
It is therefore crucial to assess the impact of the amount of information that we piggyback on the
ability of PipeCache to process traffic with a small cache while achieving high accuracy.
Trade-off analysis with piggybacked metadata. Consider the following example in which a
4-pipe switch receives a stream of 220 packets where i) only a fraction 𝜂 = 1

8 of the packets (i.e., 217
packets) go to Pipe 1 and ii) Pipe 1 is not the monitoring pipe for these packets. Now, assume that
the monitoring pipe for a fraction 𝛾 = 1

4 of the packets (i.e., 2
18 packets) in the stream is Pipe 1. In

other words, the number of packets whose monitoring pipe is Pipe 1 (i.e., 218) is twice as much as the
number of packets that are forwarded to Pipe 1 (i.e., 217). According to basic queueing theory, if we
want to prevent the cache occupancy from growing indefinitely, we need to piggyback more than

𝛾

𝜂
= 2 traffic class identifiers from the cache every time we forward a packet. Note that, by carrying

only 2 identifiers the cache occupancy would still grow indefinitely. In this way, we can use the 217
packets forwarded to Pipe 1 to carry the 218 identifiers that will be cached. In general, if we want to
prevent the cache occupancy from growing indefinitely, we need to piggyback more than 𝛾

𝜂
traffic

class identifiers. If 𝛾

𝜂
is higher than the amount of piggybacked identifiers, the cache will fill and

information about the packets not fitting in the cache would be discarded. There exist therefore a
tradeoff between the amount of information that must be piggybacked on every single packet, the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:11

imbalance of the forwarded traffic, and the ability of the system to drain a cache. Whenever a cache
fills completely and PipeCache does not manage to drain that cache using the available space in
the metadata of a packet (which we evaluate in Section 5), PipeCache relies on the following two
approaches to avoid losing monitoring information.
Approach #2: Generating ad-hoc packets.When a traffic packet hits a full cache, PipeCache
clones the data packet and forwards the cloned copy to its monitoring pipe. When cloning the
packet, the switch also fetches additional traffic class identifiers from the cache so that the cloned
copy helps in draining the cache. This approach guarantees all the monitoring information is
ultimately collected in its assigned monitoring pipe. However, creating clones of a packet has two
main costs: i) switches have a constraint on the amount of packets that can be cloned and ii) a
cloned packet is an additional packet that the switch must process, increasing the risk of packet
drops. We note that the bandwidth requirements are unlikely to be the main issue as the cloned
packets only contain a few traffic class identifiers and are therefore small in size. If the number of
cloned packets exceeds a certain threshold (potentially “zero” if an operator does not want to clone
& recirculate packets), we resort to our third approach.
Approach #3: Resorting to a fallback mechanism. When a traffic packet hits a full cache and
the packet cannot be cloned as described in Approach #2 (because we already cloned more packets
than what the pre-configured threshold allows us to do), PipeCache simply forwards the packet
to its egress pipe without caching the traffic class identifier and it updates the monitoring data
structures in the non-monitoring pipe. We say that such identifiers have been deflected. PipeCache
keeps statistics about the number of deflected packets at a configurable granularity and uses these
statistics to estimate the size of each traffic class. When PipeCache estimates the size of a traffic
class, it reads the counters on the monitoring pipe and then uses the “deflected” statistics to adjust
the traffic class size accordingly. The granularity at which PipeCache keeps deflection statistics
impacts the overall memory consumption. We rely on coarse-grained statistics about the number
of deflected packets from each ingress to each egress pipe. A critical challenge is the potential
inaccuracy of the traffic class estimation due to the coarse granularity of the deflected statistics.
When there are traffic classes with extreme bursts, there is a risk that the number of deflected
packets for these traffic classes is much higher than the pipe-to-pipe amount. This inaccuracy could
lead to underestimating the size of a traffic class. We therefore use a burst detector to mark such
traffic classes. We estimate the size of these traffic classes by reading their counters across all pipes
(from the control plane). The fallback mechanism guarantees that PipeCache does not perform
worse than a naïve deployment under traffic imbalances among egress pipes or bursty traffic.

3.3 Tackling Hardware Constraints

There are several important aspects and constraints to keep in mind when deploying PipeCache on
an ASIC switch. If PipeCache were to require performing complex operations, then its deployment
could be undermined. In this section, we look at the existing constraints known from publicly
available documents about programmable ASIC switches (e.g., Intel Tofino [37]). These constraints
are likely to be present (in some forms) on any high-speed switch ASIC.
The main constraint is the one related to the number of operations that can be performed on a

memory location. Programmable ASIC switches configure portions of their SRAM memories to be
read/written as indexed arrays directly at data-plane speed to be used as registers. A stateful ALU
reads/writes at one single index of the register array per-processed packet. Therefore, one cannot
read/write two elements at different indices in a register array.

The implications of the above constraint on PipeCache are relevant and worth discussing here.
PipeCache must perform two critical operations: Operation 1) pushing and fetching multiple traffic

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:12 Marco Chiesa and Fábio L. Verdi

Cache
Sliced existing monitoring data structures

Pipe 1

key-value count-min sketch

7 5
1
3

X-BarSlice 1 Slice 2
to-1

to-n

PipeCache statistics

Slice 1 Slice 2

3
5
1
3

Slice 1 Slice 2
1
9
8

7
4
2

pipe-to-pipe
counters

bloom filter
1

Fig. 10. Adapting PipeCache to hardware constraints.

class identifiers from the cache at data-plane speed, Operation 2) quickly identifying which traffic
class identifiers in the cache should be stored on the egress pipe where a traffic packet is being
forwarded. Operation 1 means the cache must be implemented with a register. However, fetching
multiple identifiers requires to have independent registers as a single register can only read one
element. We therefore split both the cache and the existing data structures into multiple slices
where each traffic class is mapped exactly to one slice. See Figure 10 for a schematic architectural
representation. When PipeCache fetches elements from the cache, it fetches at most one element
from each slice of the cache. Similarly, the fetched identifiers will update distinct registers in
the egress pipe. Operation 2 requires deploying per-egress-pipe caches (identified in the figure
with “to-1,. . . , to-n”) as we cannot perform a complex search inside a register array to find which
identifiers should go to a certain monitoring pipe. Having dedicated per-slice per-egress-pipe caches
increases the memory requirements compared to a shared cache as packets of a traffic class can
only be cached in their assigned per-slice per-pipe cache.
Discussion. As explained in the motivation, PipeCache helps in reducing memory requirements
by i) storing per-monitored-class statistics at one single location and ii) leveraging memory resources

across all pipes. If the workload and the monitoring task are such that 1) all packets belonging to
the same monitored traffic class are not spread across distinct pipes and 2) the set of incoming
packets for all monitored traffic classes is spread uniformly across pipes, then PipeCache will not
reduce the memory requirements. We show one such example in App. D in Fig. 30.

4 IMPLEMENTATION

PipeCache is a packet processing primitive that could be realized as part of an ASIC functionality. To
verify its feasibility, we implement PipeCache on top of the FCM-Sketch Tofino implementation [22].
We split each Count-Min sketch into 4 slices implemented with registers. We implement the cache
using a stack, which requires two register arrays. The number of register elements used for the
caches grows linearly depending on the number of slices and not the number of pipes. We verify the
correct implementation of the system running the same CAIDA traffic traces used in the evaluation.

Resource FCM

PipeCache

w/ FCM

SRAM 18.04% 20.94%
TCAM 0.00% 3.47%

VLIW Instruction 5.80% 13.80%
Exact Match X-Bar 4.13% 11.46%
TCAM Match X-Bar 0.00% 5.05%

Fig. 11. ASIC resources used by PipeCache.

ASIC Resource Usage. We summarize the
overhead of our preliminary implementation
of PipeCache (only Approach #1) on a 2-pipe
Intel Tofino1 switch in Table 11. We set the size
of the FCM levels as in the original FCM paper.
We split each level into 4 slices with one-fourth
the original size. We use a per-pipe per-slice
cache of 100 elements. From the table, we ob-
serve that PipeCache requires a little bit of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:13

additional memory compared to a straightforward FCM-Sketch multi-pipe implementation. The
overhead is due to the additional cache and its logic. We currently use some TCAM to extract all
bits from the header fields to select the target pipe, the forwarded pipe, and the slice. This could be
optimized using bit-slice operations as a ternary match is not necessarily needed. We observe a
higher usage of the exact match crossbar (X-Bar) due to the additional cache logic needed to update
the stack data structures in the ingress pipelines. Our code could be optimized to reduce the impact
of the cache logic on the number of used registers.

5 EVALUATION

We now evaluate the effectiveness of PipeCache on real-world traffic traces, quantifying both
its benefits and overheads compared to state-of-the-art pipe-oblivious approaches. We augment
Elastic-Sketch, FCM-Sketch, HyperLogLog, MRAC, Beaucoup, and FlowLens with our cache-based
pipe-aware monitoring mechanism PipeCache. We first focus on heavy-hitter detection, which is
a key part of many monitoring solutions. We then report results on super-spreader detection and
entropy estimation of the flow size distribution. We answer the following questions:
• “Does PipeCache reduce memory requirements?”

• “What are the packet recirculation overheads?”

• “Does the fallback mechanism identify all heavy hitters with high accuracy?”

• “Does PipeCache quickly detect heavy hitters?”

• “What is the best number of slices?”

• “Does PipeCache cope with traffic imbalances and bursty traffic?”

• “Does PipeCache generalize to other monitoring tasks?”

Our results indicate that four slices suffice to achieve close-to-single-pipe accuracy under load
imbalances and bursty traffic. PipeCache requires minimal bandwidth overheads that fit within the
internal recirculation port of a switch and it requires minimal additional memory resources to store
cached traffic class identifiers, ultimately achieving up to ∼ 10x memory reduction compared to
pipe-oblivious implementations of existing monitoring solutions. Our code is publicly available [1].
Heavy hitter detection and accuracy metrics. We focus on identifying IP source addresses
carrying large amounts of traffic (as in [63]). Each traffic class is identified by the 32-bit IPv4 source
address of each packet. We measure the following accuracy metrics:
• F1-score, defined as 2𝑡𝑝

2𝑡𝑝+2𝑝+𝑓 𝑛 where 𝑡𝑝 , 𝑓 𝑝 , and 𝑓 𝑛 are the number of true positives, false positives,
and false negatives, resp. An F1-score of 1 means high accuracy (i.e., all and only heavy hitters
are reported) while an F1-score of 0 means inaccuracy (i.e., zero heavy hitters correctly reported).

• Average Relative Error (ARE) as the average traffic-class size error, i.e.,
∑

𝑡𝑐∈𝐻𝐻
𝑡𝑐∗−𝑡𝑐′
𝑡𝑐∗ , where 𝐻𝐻

is the set of reported heavy hitters, 𝑡𝑐∗ (𝑡𝑐 ′) is the real (reported) size of traffic class 𝑡𝑐 .
Resource metrics.We quantify the amount of resources used by PipeCache and the baselines
along two dimensions:
• memory: we measure the amount of used memory in bits across all pipes. The cache memory

overhead parameter controls the size of the cache memory with respect to the memory of an
existing monitoring solution. For example, if Elastic-Sketch consumes 1MiB, a cache memory
overhead of 10% consumes 100 KiB for the cache entities.

• packet recirculation: we measure the amount of additional bandwidth (in Gbps and packets per
second) used by PipeCache when recirculating cloned packets.

Traffic traces and forwarding mechanism.We run our simulations using two distinct CAIDA
traces from 2019. We expect to observe similar trends for datacenter traces. The first CAIDA trace
contains 21M packets, roughly 500 traffic classes (i.e., source IP addresses), and 166 traffic classes
generate at least 10 k packets. The second trace contains roughly 100M packets, 2M traffic classes,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:14 Marco Chiesa and Fábio L. Verdi

105 106 107

amount of chip memory [bit]

0.00

0.25

0.50

0.75

1.00

F1
-s

co
re

Left y-axis
single pipe
20% cache
40% cache
baseline 16-pipe

0.01

0.10

1.00

B
an

dw
id

th
ov

er
he

ad
[%

]

Right y-axis
20% cache
40% cache

Fig. 12. PipeCache with packet recirculation when augmenting Elastic-Sketch [73]

and 564 traffic classes generate at least 10 k packets. We obtain quantitatively similar results and
show them only for the first trace. We replay the traces through one ingress pipeline and spread the
traffic over the egress pipelines using an ECMP-like flow-consistent spreader. We note that using
an ECMP load balancer gives us a reasonably fair way of modeling how traffic towards different
IP destinations could be forwarded. In fact, in this evaluation, a traffic class is a source IP address
so traffic spreads across egress pipes based on the destination IP address. We generate a traffic

imbalance by changing the weights of a traffic spreader. A traffic imbalance of 𝑥 means that some
pipes have a weight that is 𝑥 times higher than some other pipes, i.e., they receive 𝑥 times more
traffic. An imbalance of 1 means traffic is forwarded uniformly. An imbalance of 31 means one port
receives 31% less traffic than another port. We repeat each simulation 5 times changing the seed.
Existing data-plane monitoring configuration. We configure Elastic-Sketch using two sets
of arrays for the heavy part and a single array for the light part using the hardware approach
described in the original paper. The two arrays in the heavy part are indexed using two different
hash functions and each pipe uses a different set of hash functions. We set the 𝜆 value, which is
used to determine when to evict a traffic class from the heavy part, to 8. We configure FCM-Sketch
using 3 levels of Count-Min sketches. Each sketch contains two arrays indexed with two different
hash functions. The bit size of the element is 8, 16, and 32 for the 1st, 2nd, and 3rd levels. The
number of entries is reduced by 8x per increasing level. We show graph results for Elastic-Sketch
and report summaries for FCM-Sketch (with key graphs in App. B). Packet recirculation overheads
do not depend on the monitoring solutions but only on the number of pipes, number of slices, cache
sizes, and traffic traces. We note that FCM-Sketch requires more memory than Elastic-Sketch to
achieve the same F1-score (as previously shown in Figure 1, meaning that FCM-Sketch will use
larger caches in our simulations (thus incurring significantly lower packet recirculation overheads).
PipeCache achieves close to single-pipe accuracy. We first quantify the accuracy and per-
formance overheads of the PipeCache version that recirculates cloned packets when a cache is
full and the fallback mechanism is disabled. Figure 12 shows the F1-score (left y-axis, blue) over
the per-bit memory utilization (x-axis) for both the single-pipe (cross mark) and 16-pipe (square
mark) deployments as well as the 16-pipe deployment with a cache memory overhead of 20%
(right-facing triangle mark) and 40% (bottom-facing triangle mark). We let PipeCache recirculate
as many packets as needed so that all information ends up being stored in the correct pipe.
We first observe that the F1-score of our cache-based approaches is close to the one of the

single-pipe deployment. Compared to the 16-pipe baseline deployment (square marks), PipeCache
reduces the memory requirements by 6x for any F1-score above 0.7. As for FCM-Sketch, we reduce
memory consumption between a factor of 2 − 3.3x for F1-scores above 0.9 (see Figure 26 in App. B).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:15

PipeCache detects heavy hitters without aggregating information from multiple pipes.

A side result of Figure 12 is that PipeCache quickly identifies all heavy hitters without aggregating
information from different pipes. Conversely, the baseline approach from Figure 7 in Section 2
suffers from either a large number of false positives or false negatives. Specifically, PipeCache
detects all and only the heavy hitters of Figure 7 without any false positives while the baseline
detects all the heavy hitters with 1000s of false positives with a per-pipe detection coefficient of 1

16 .
PipeCache quickly detects heavy hitters at the per-pipe level. Caching packet information
as in PipeCache may delay the detection of a heavy-hitter. The impact of this delay is however
negligible for one main reason. The larger per-slice queue in all our simulations is 256, which
means we may delay at most 256 packets of a single traffic class. Any heavy-hitter with a size that
is 256 packets larger than the heavy-hitter detection threshold would be detected as packets would
start to be recirculated. Moreover, in expectation, each cache contains packets from different traffic
classes, which would further lower the detection gap. We measure this delay by comparing an ideal
single-pipe detection and PipeCache using the 16-pipe deployment of Figure 7. We measure the
average heavy-hitter detection packet delay, which measures after how many additional packets
(from the instant we generate the 10000th packet of a traffic class) PipeCache detects a heavy-hitter.
Our results show that the average detection delay is 2 633 packets. On a 25.6-Tbps switch and
average packet sizes of 1 kB, this delay translates to 800 nanoseconds. The CPU of a switch would
require seconds to perform the same detection [55].
PipeCache requires minimal bandwidth overheads.We have shown that PipeCache achieves
a similar performance to single-pipe deployment. However, we achieve this by recirculating cloned
packets whenever caches are full, which increases bandwidth overheads. Without a cache, almost
all packets need to recirculate as they are likely to be forwarded towards any of the 15 pipes that do
not store state for that packet. Recirculating so many packets would pose high overheads on today’s
ASIC switches. Figure 12 shows the bandwidth overheads (right red y-axis) for our cache-based
solutions. We see that the bandwidth overheads are always below 3% and quickly decrease as we
use more memory for both Elastic-Sketch and our cache. The recirculation overheads are higher
when we consider the percentage of recirculated packets (not explicitly shown in the graph). The
percentage of recirculated packets can be obtained by multiplying the bandwidth overhead by
900B
72B = 12.5, where 900B is the average packet size in our trace and 72B is our recirculated packet.
Our graphs show that to achieve an F1-score above 0.8 (0.99), PipeCache only incurs a bandwidth
overhead below 0.2% (0.08%) with a 40% cache memory overhead, which translates to recirculating
2.5% (1%) of the total number of packets. We make the following two important observations about
these observed packet recirculation overheads. First, today’s ASIC switches are designed to handle
more than 2.5% of recirculated packets with internal recirculation ports. Second, by recirculating
2.5% of the packets, a switch would achieve line-rate for packets with an average size of 308 bytes
instead of 300 bytes [39], which is minimal overhead.
False negatives arise without packet recirculation. We now show that limiting packet recircu-
lation leads to false negatives, i.e., undetected heavy hitters. Figure 13 shows the number of true
positives (left blue y-axis) and the number of false positives (right red y-axis) over different memory
utilizations (x-axis) for different thresholds on the number of packets that can be recirculated: 0%
(which only counts packets forwarded to their monitoring pipe), 5%, and 20%. All these simulations
use a cache memory overhead of 20%. Our graph shows several interesting results. First, when
we use a small memory (left side of the graph), we miss detecting a significant amount of heavy
hitters (blue lines below 166) and the number of false positives is relatively high. Second, when
we increase the amount of memory, we observe that the number of true positives (i.e., correctly
detected heavy hitters) increases and the number of false positives decreases. In fact, by using more

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:16 Marco Chiesa and Fábio L. Verdi

130

140

150

160

170

Tr
ue

po
si

tiv
es

Left y-axis (recirc. threshold)
0% 5% 20%

105 106 107

amount of chip memory [bit]

1

10

100

1000

Fa
ls

e
po

si
tiv

es

Right y-axis (recirc. threshold)
0% 5% 20%

Fig. 13. Impact of packet recirculation threshold on

the heavy hitter accuracy task (Elastic-Sketch).

130

140

150

160

170

Tr
ue

po
si

tiv
es

Left y-axis (recirc. threshold)
0% 5% 20%

105 106 107

amount of chip memory [bit]

10−1

101

103

105

107

Fa
ls

e
po

si
tiv

es

Right y-axis (recirc. threshold)
0% 5% 20%

Fig. 14. Impact of the fallback mechanism on the

accurate detection of heavy hitters (Elastic-Sketch).

memory, our cache becomes larger and we recirculate fewer packets. Surprisingly, even with a 0%
threshold, PipeCache identifies all the 166 heavy hitters as the cache is large enough to absorb
bursts of traffic going to non-monitoring pipes.
The fallback mechanism of PipeCache increases the detection of heavy hitters. We
have shown in Figure 13 that when we limit the percentage of packets that can be recirculated, a
non-negligible fraction of heavy hitters go undetected, especially when using less memory (left side
of the graph). We now show the impact of using the fallback mechanism proposed in Section 3. The
fallback mechanism kicks in whenever a cache is full and the percentage of recirculated packets has
reached a pre-configured limit. Instead of disregarding a packet, the fallback mechanism forwards
the packet to its designed egress port (and pipe) and updates the data structures on that pipe.
Figure 14 shows again the number of true positives (left blue y-axis) and false positives (right red
y-axis) over different memory sizes for PipeCache with different packet recirculation thresholds
when using the fallback mechanism. Our results show that the fallback mechanism trades a higher
number of false positives for higher true positives: it identifies all the 166 heavy hitters (blue lines
at the top of the graph) at the cost of a higher number of false positives (compared to Figure 13).
We note that the number of false positives at low memory utilization is high. Due to high packet
recirculation, the fallback mechanism behaves similarly to the 16-pipe baseline.

106 107 108

amount of chip memory [bit]

10−1

100

101

102

R
ec

irc
ul

at
ed

pa
ck

et
s

[%
] Number of slices: 2 4 8 16

Fig. 15. Recirculation overheads vs. # slices.

Four slices better absorb bursts. The higher the num-
ber of slices, the larger the amount of information that
can be transferred from the cache to the monitoring data
structures in the egress pipes. Intuitively, the higher the
number of slices, the lower the packet recirculation needs
as the caches can be flushed quicker. However, the higher
the number of slices, the smaller the per-slice cache size
(as we have the same cache memory overhead partitioned
over a higher number of cache slices). Figure 15 shows
the percentage of recirculated packets (y-axis) over the
amount of utilized memory for a different number of
slices: 2 (cross mark), 4 (triangle mark), 8 (square mark), and 16 (circle mark). We set the number of
pipes to 16 and the cache memory overhead to 20%. Our results show that with 4 slices we obtain
the lower packet recirculation overhead. With 2 slices, PipeCache does not piggyback enough
identifiers to drain the caches. With 8 or 16 slices, the caches are instead too small compared to 4
slices.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:17

105 106 107 108

amount of chip memory [bit]

10−1

100

101

102

R
ec

irc
ul

at
ed

pa
ck

et
s

[%
]

Level of imbalance: 31
15
7
3
1

Fig. 16. Impact of load imbalances on

packet recirculation.

105 106 107

amount of chip memory [bit]

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Left y-axis
single pipe
baseline 16-pipe

20% cache

0.0

0.1

1.0

10.0

B
an

dw
id

th
ov

er
he

ad
[%

]

5.7x

Right y-axis
20% cache

Fig. 17. Impact of bursty traffic.

PipeCache copeswith traffic imbalances. We showhow traffic imbalances affect the percentage
of recirculated packets. Figure 16 shows the percentage of recirculated packets (y-axis) over the
amount of utilized memory (x-axis) for different levels of imbalance: 1 (bottom-facing triangle
marks), 3 (square marks), 7 (circle marks), 15 (cross marks), and 31 (top-facing triangle marks). An
imbalance of 1 is a uniform load balance while an imbalance of 31 means that some pipes (i.e., one
pipe in this test) receive 31x less traffic than other pipes. Our results show that imbalances affect the
amount of recirculated packets. Even with an imbalance of 31, the amount of recirculated packets
is below 2% with higher memory utilization. We note that with an “infinite” imbalance, the fallback
mechanism performs close to the baseline (not shown in the graphs). One way to better handle
traffic imbalances would be to change the assignment of the traffic classes to egress pipes and map
more traffic classes on pipes that receive more traffic. We leave such optimizations as future work.
PipeCache handles bursty traces with little recirculation bandwidth overheads.When
there are many packets of the same flow that arrive “back-to-back”, the cache data structure fills up
and more packets must be recirculated to drain the cache. We measure the impact of bursty traffic
on PipeCache by synthetically increasing the number of back-to-back packets in the analyzed trace.
We define the level of burstiness of a trace as the average number of back-to-back packets with
the same flow identifier. For example, if the trace contains the sequence of packets < 𝐴,𝐴,𝐴,𝐴 >,
the burstiness level is 1 while a sequence < 𝐴, 𝐵,𝐴, 𝐵 > has a burstiness level of 0. The original
Caida trace has a burstiness level of 0.07. In this paragraph, we increase the burstiness level of the
CAIDA trace to 0.86 (highly bursty) by replicating packets. Figure 17 shows the F1-score (right blue
y-axis) and the extra bandwidth requirements (left red y-axis) while varying the available memory
(x-axis) for the single-pipe (cross marks), 16-pipe baseline (square marks), and PipeCache with 20%
cache (triangle marks) deployments and a burstiness level of 0.86. Our results show that PipeCache
retains almost a 6x memory reduction w.r.t. to the 16-pipe baseline. Compared to the original trace
of Figure 12 (which has a burstiness level of 0.07), we see that the bandwidth overhead increases by
a factor of ∼10x because of the higher number of packet recirculations needed to drain the caches.
To achieve an F1-score of 0.9, the bandwidth overhead of PipeCache is just 2%, which is within the
available internal recirculation resources of existing programmable switches.
PipeCache is not specific to heavy hitters. Case #1: detecting superspreaders. We im-
plement HyperLogLog [24] to identify super spreaders in the same traffic trace and augment it
with PipeCache. A super spreader is a source IP address that sends traffic to more than a cer-
tain number of distinct destination IP addresses (as opposed to the large amount of packets as
in a heavy-hitter detection task). We set the detection threshold to 128 addresses. We obtain

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:18 Marco Chiesa and Fábio L. Verdi

105 106 107 108 109

Memory on-chip [bit]

0

100

200

300

400

500

600

N
um

be
ro

ft
ru

e
po

si
tiv

es

Left y-axis (True positives)
16-pipe baseline
pipe-cache, 20% cache
single-pipe

104

105

106

N
um

be
ro

ff
al

se
po

si
tiv

es

11.7x

Right y-axis (False positives)
16-pipe baseline
pipe-cache, 20% cache
single-pipe

Fig. 18. Super-spreader detection with PipeCache.

similar results with other threshold values. Fig-
ure 18 shows the number of true positives (left
blue y-axis) and false positives (right red y-axis)
over different memory sizes for the single-pipe
deployment (cross marks), a 16-pipe deploy-
ment HyperLogLog baseline (square marks),
and PipeCache with HyperLogLog (triangle
marks). The results show that PipeCache per-
forms very closely to a single-pipe deployment,
both in terms of true and false positives. We
note that the 16-pipe deployment baseline re-
quires up to 11.7x more memory to achieve the
same number of false positives of PipeCache.
We observe that the true positive line for the 16-pipe baseline deployment is higher than

PipeCache and single-pipe deployments. This should not be interpreted as a gain of the 16-pipe
baseline. The true positive line of the 16-pipe deployment is higher because there are also many
false positives, i.e., almost every monitored traffic class is reported as a super spreader. This is
also the case for the leftmost points of the single-pipe and PipeCache deployments, which detect
∼550 true positives with ∼ 105 bits of memory. We note again that the gains of PipeCache over
the 16-pipe baseline come from storing all the monitoring information in a single pipe instead
of spreading it over all pipes. This translates to a larger available memory, especially on next-
generation high-speed switches with multiple pipes. Recirculation overheads are identical to the
above heavy-hitter detection evaluation.

107 109

amount of chip memory [bit]

103

104

en
tro

py

13x

real entropy

16-pipe
M

R
AC

16-pipe
M

R
AC

+

PipeC
ache

1-pipe
M

R
AC

Fig. 19. Entropy estimation.

PipeCache is not specific to heavy hitters. Case #2: Entropy

estimation. We implement the basic version of the MRAC al-
gorithm [46] (as in the Elastic-Sketch work [73]) to compute the
entropy of the flow distribution. The entropy of the flows distri-
bution is computed as −∑

𝑖 (𝑖 𝑛𝑖𝑚 log 𝑛𝑖
𝑚
) where 𝑛𝑖 is the number of

flows whose size is 𝑖 packets,𝑚 is the sum of all the 𝑛𝑖 , and 𝑖 it-
erates between 1 and the size of the largest flow. Figure 19 shows
the estimated entropy (y-axis) along different memory constraints
(x-axis) for both a single-pipe (cross marks) and a 16-pipe MRAC
baseline deployment (square marks) as well as PipeCache with
MRAC (triangle marks). The horizontal red dashed line represents
the real entropy of the trace. We observe that PipeCache reduces
the memory requirements for implementing MRAC on a 16-pipe
switch by 13x compared to the baseline.
PipeCache brings benefits to existing multi-query monitoring systems. We implement
Beaucoup [18] to support two queries at the same time: i) detecting IP source address super
spreaders and ii) IPpair heavy hitters. We select these two types of queries for two reasons. First,
the traffic classes are defined at different granularities, i.e., in the super-spreader query a traffic
class is an IP address while in the heavy-hitter query it is a pair of IP addresses. Second, the type
of “counting” (i.e., the so-called attribute of the query [18]) is different, i.e., in the super-spreader
query, we count distinct elements while in the heavy-hitter query we count the number of packets.
We note that the size of the cache element in PipeCache does not necessarily increase with the
number of supported queries. In fact, Beaucoup only executes one query per packet. Therefore the
size of the cache element is bounded by the largest number of hashes needed in a single query. In

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:19

105 107 109

amount of chip memory [bit]

0.00

0.25

0.50

0.75

1.00

F1
-s

co
re

14x

16
-p

ipe
Bea

uc
ou

p

16
-p

ipe
Bea

uc
ou

p

+ Pipe
Cac

he

1-
pip

e Bea
uc

ou
p

Fig. 20. Beaucoup superspreader

105 107 109

amount of chip memory [bit]

0.00

0.25

0.50

0.75

1.00

F1
-s

co
re 4x

16
-p

ip
e-

Be
au

co
up

16
-pi

pe
-B

C+Pipe
Cac

he

1-
pip

e-
Bea

uc
ou

p (B
C)

Fig. 21. Beaucoup heavy-hitter.

this example, the super-spreader query needs to store both the
hash of the IP source (to update the correct element) and that of
the IP destination (to update the element with the correct value).
In the heavy-hitter query, we only need to store the 32-bit hash of
the IP pair, which means the size of the cache element is 64 bits.
We analyze the accuracy of Beaucoup under two different traffic
spreading mechanisms: ECMP-based (as in previous sections) and
per-packet-random (where packets with the same 5-tuple may be
spread across pipes, as in NDP [27], Hula [43], etc.). Figure 20 and
Figure 21 show the F1-score (y-axis) for detecting superspreaders
and heavy hitters (resp.) along with different memory require-
ments (x-axis) using either a single-pipe (cross marks) or a 16-pipe
Beaucoup baseline deployment (square marks) or PipeCache with
Beaucoup (triangle marks), resp. In both figures, packets are spread
using per-packet-random. The results show that PipeCache re-
duces the memory requirements to achieve an F1-score of 0.75 by
14x and 4x for the super-spreader and the heavy-hitter tasks, resp.
We now consider an ECMP packet spreader (figures in App. C). In
this case, we observe different behaviors for the super-spreader and
the heavy-hitter tasks. In the super-spreader case, packets belonging to the same traffic class spread
over multiple pipes since packets with the same IP source address may have different destinations.
However, for the heavy-hitter task, the CAIDA trace is such that packets belonging to the same
IP-pair are unlikely to belong to different 5-tuples. This means that packets of the same monitored
traffic class are likely to traverse always the same pipe. In this case, we do not observe benefits in
deploying PipeCache for reducing the memory requirements in the heavy-hitter task. We note
that it helps to deploy PipeCache even if in only one of the monitored tasks packets from the same
monitored traffic class spread across pipes (e.g., super-spreader monitoring).
PipeCache brings benefits for flow-sampling-based monitoring queries. Some monitoring
systems sample a set of flows from the currently forwarded ones and keep statistics only about
those flows. FlowLens [6] is an example of such a system, which relies on a data structure to

107 109

amount of chip memory [bit]

103

104

105

106

#
ac

cu
ra

te
ly

cl
as

si
fie

d
flo

w
s

17x

16
-p

ipe
Flow

Le
ns

FL + PipeCache

1-pipe FlowLens (FL)

Fig. 22. FlowLens comparison.

store per-connection information. We implement FlowLens to sup-
port the monitoring task of computing the per-flow packet length
distribution. We use the difference between the real packet length
distribution and the estimated one by normalizing the two distri-
butions and summing up the estimation errors for each “packet
length bin” used in FlowLens. If the sum of the errors is smaller than
5%, we say that the packet length distribution of that flow is accu-
rate. Figure 22 shows the number of accurately estimated per-flow
packet-length distributions (y-axis) under different memory re-
quirements (x-axis) using either a single-pipe (cross marks) or a 16-
pipe FlowLens baseline deployment (square marks) or PipeCache
with FlowLens (triangle marks). We first use per-packet-random to spread packets. The results
show that there are significant gain in using PipeCache to correctly estimate the packet length
flow distributions. We then repeated the simulation with the ECMP-based packet spreader (refer to
App. D for graphs). As expected, in this case, we do not see any gains because the monitored traffic
classes (i.e., identified with 5-tuple) do not spread across multiple pipes. However, when traffic
imbalances across pipes arise, we observe a 2x memory reduction when using PipeCache.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:20 Marco Chiesa and Fábio L. Verdi

6 DISCUSSION

We discuss aspects of PipeCache that relate to i) its potential memory gains, ii) its limitations,
iii) its deployment within general network monitoring tools, and (iv) covert channel attacks.

6.1 Conditions for Memory Gains in PipeCache

There are different factors that affect whether PipeCache will bring any memory reduction:
• Spreading packets of a traffic class.When packets belonging to the same traffic class spread across
multiple pipes, PipeCache brings substantial memory gains by avoiding duplicating information
on multiple pipes. If packets belonging to the same traffic class do not spread across multiple
pipes, then PipeCache may not bring memory benefits (as in Figure 30 in Appendix D).

• The level of imbalance across pipes. Even if packets belonging to the same traffic class do not spread
on multiple pipes, PipeCache may still reduce memory requirements if packets are forwarded
with some levels of imbalance since some pipes may end up not fully utilizing their memory
resources (see Figure 31 in App D).

• The amount of information that should be stored in the cache per packet. PipeCache requires
storing a certain amount of information about a packet in the cache. In an IP-source-address
heavy-hitter monitoring task, this information is just the IP source address. In a 5-tuple heavy-
hitter, PipeCache does not have to store the entire 5-tuple as it can simply store the hash of
that tuple, which can be used to access the data structures in the egress pipe later on. In the
IP-source super-spreader task, PipeCache needs to store both the IP-source address (to access
the correct element in the egress pipe) and the destination IP address (to correctly update the
value of the accessed element). Therefore, in this case, the memory requirements of PipeCache
doubles. Memory requirements also increase with multi-query monitoring systems. In the worst
case, PipeCache must store the exact 5-tuple as well as other per-packet attributes (e.g., packet
length, inter-packet gap, TCP options).

• The data structures used to monitor traffic. PipeCache brings different levels of memory reduction
when using Elastic-Sketch or FCM-Sketch for the same monitoring task. Our evaluation shows
that PipeCache brings high memory benefits with all the mechanisms that store an identifier
of the traffic class (see Figure 12 for Elastic-Sketch, Figure 20 for Beaucoup, and Figure 22 for
FlowLens). Our evaluation shows that such high gains may also be achievable without storing
per-traffic-class identifiers (as in HyperLogLog, Figure 18). Formally understanding the impact of
multi-pipe deployments on monitoring mechanisms is future work.

6.2 PipeCache limitations

There are two aspects of the PipeCache implementation that require future work.
Reducing the number of register arrays. The number of registers used in PipeCache grows
quadratically in the number of pipes and this may become a limiting factor on ASIC programmable
switches. We note that our implementation of PipeCache is just a feasibility check. The cache
functionality of PipeCache could be an in-built primitive in the hardware of each pipe.
Parameter tuning. There exist one key parameter in PipeCache that needs to be tuned depending
on the burstiness and level of imbalance of the input trace: the threshold used to enable Approach
#3. A threshold of 0 would disable PipeCache. A threshold that is too high would result in a high
recirculation overhead. In our simulations, we set the threshold to 8, i.e., a packet is not cached and
directly forwarded to the egress pipe based on its forwarding information whenever PipeCache
detects in the countable bloom filter that it has cloned and recirculated packets in the element
pointed by the forwarded packet 8 times. A more thorough study of the impact of this parameter
on the performance of PipeCache is left as future work.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:21

6.3 PipeCache and covert channel attacks

We discuss the ability of PipeCache to detect different types of covert channel network attacks:
• Packet size distributions. In this type of attack, information is leaked using different packet sizes.
A common way to detect this attack is to track sudden changes in the packet size distribution.
Tracking packet size distributions per-traffic-class requires storing information on registers and
therefore suffers from memory overhead in multi-pipe switches. We showed a 25x memory
reduction by using PipeCache for these type of covert channel attacks.

• Inter-packet gap (IPG) time. In this type of attack, information is leaked by delaying consecutive
packets by different amounts of time. These types of attacks are cumbersome to detect on multi-
pipe switches because packets spreading on multiple pipes lead to incorrect inter-packet-gap
measurements. IPGs are measured by subtracting timestamps between consecutive packets. If
consecutive packets spread across multiple pipes, they arrive on different pipes one cannot
measure the inter-packet gap. PipeCache helps in moving all the IPG measurements on the
same pipe. PipeCache could compute the average inter-packet gap of each traffic class, however,
computing the distribution of inter-packet gaps would be more complex because inter-pipe
cached information is not moved to the egress in order.

• Storage in packet headers. In this type of attack, information is leaked inside TCP header fields
and is detected by monitoring rare values in these fields using data structures in the data plane.
Similarly to detecting packet length distributions, PipeCache could lower memory requirements
as it would store information about a single traffic class on a single pipe.

6.4 Deployment beyond ASIC switches

In this work, we focused on monitoring data structures that are deployed on ASIC switches.
Networking monitoring is, however, a complex operation that entails collecting and analyzing
traffic information at different locations using a different types of devices. Monitoring solutions
such as *Flow[62], SmartWatch [58], NetWarden [70], and FlowLens [6]) rely on a combination
of ASIC switches, SmartNICs, and general-purpose CPUs to detect network events at different
levels of granularity and performance. ASIC switches offer high packet processing throughput
with constrained packet processing logic (e.g., no decryption) and constrained memory. Conversely,
general-purpose CPUs support expressive packet processing logic at a lower throughput. The goal
is to offload as much as possible the monitoring logic to ASIC switches and rely on SmartNICs or
CPUs to perform more complex (and fine-grained) monitoring operations.
PipeCache brings benefits to such monitoring solutions by reducing the memory footprint on

ASIC devices. We showed in our evaluation that PipeCache significantly improves the accuracy of
the packet length distribution in FlowLens [6], which would intuitively result in better detection
accuracy on external devices. Solutions that rely on a two-level detection mechanism (e.g., Smart-
Watch [58]), where the ASIC identifies suspicious traffic at a coarse grainularity and forwards it
to external devices for fine-grained analysis, may also benefit from PipeCache. Our mechanism
would reduce memory requirements for the data structures deployed on the switch for identifying
suspicious traffic.
7 RELATEDWORK

There exists a rich body of literature on network monitoring.
Single-switch monitoring. Extensive research has been carried out in recent years on data-plane
monitoring on a single switch [73] [9, 11–13, 18, 33, 34, 45, 48, 52–54, 56, 59, 62, 63, 77]. The
goal of these systems is to design algorithms for extracting traffic statistics from traffic given the
constrained memory and computational capabilities of a switch. These works do not address issues
arising from multi-pipe switch architectures and are therefore orthogonal to our work.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:22 Marco Chiesa and Fábio L. Verdi

Network-widemonitoring. Several existingworks have explored the problems of collecting traffic
statistics from individual switches to build a network-wide view of the data-plane conditions [2,
8, 10, 10, 20, 21, 30, 31, 35, 50–54, 62, 64, 71, 78]. These works model each switch as a single node,
which we show is not correct when using multi-pipe switches. One can see a multi-pipe switch
as a special instance of a network where a pipe is equivalent to a node of the network. Most of
the existing work of network-wide monitoring aggregates statistics using a controller. Some of
these works (e.g., FlowRadar [52]) pull the data-plane data structures at the control-plane level
(e.g., through the CPU of the switch), which is renowned to be slow. Some other works (e.g.,,
LightGuardian [78]) extract the traffic statistics directly at the data-plane and may piggyback it on
data packets to reach end hosts and transmit those statistics to a controller. Conversely, we focus
on the impact of multi-pipe deployments and we collect all information in one pipe, thus achieving
faster detection. Some network-wide works tackle the problem of selecting which traffic classes
are monitored at a switch (e.g., CFS [10], AROMA [7]). PipeCache solves a completely different
problem, i.e., collecting monitoring information of packets that are spread over multiple locations
at a single location.
Awareness of multi-pipe switches. Khooi et al. [44] first raised awareness about designing
multi-pipe-aware systems. The authors state that “in-network traffic monitoring applications operate

as intended on multi-pipeline switches”. In this work, we show the opposite conclusion. Finally,
MP5 [60] is a recent work on multi-pipe ASIC programmable switches. It does not however tackle
the problem of heavy-hitter detection, it does not show the impact of multi-pipe deployments on
the accuracy of the detection, and we do not see how MP5 could be easily extended to solve it.
Alternative hardware implementations. The dRMT switch architecture envisions a shared
memory inside a pipe that can be accessed from all its match/action stages. However, dRMT
does not aim for inter-pipe shared memory and, as far as we know, there are not yet commercial
products that support it. Solving the inter-pipe memory problem is renowned to be an extremely
difficult problem [40]. Trio [72] is a programmable ASIC switch that supports a DRAM memory
shared across packet processor engines. DRAM is a memory for bulk transfers and suffers from
performance limitation when random access is needed [69] as in the case of different packets
pointing to a different part of the memory, making it difficult to use for per-packet level telemetry.
Distributed shared state. SwiSh [76] handles distributed state in a network using programmable
switches by replicating the same information across multiple switches. Thus, SwiSh replicates
information in multiple locations instead of collecting it at one location. Conversely, PipeCache
stores monitoring information at one single location with substantial memory savings.

8 CONCLUSIONS

In this work, we unveiled teh impact of deploying existing monitoring solutions on multi-pipe
switches. We presented PipeCache, a system that adapts a variety of monitoring mechanisms
to multi-pipe switches. Our evaluation shows up to 16x memory savings. PipeCache relies on
piggybacking metadata, generating ad-hoc packets, and resorting to a fallback mechanism to store
monitoring information on a single pipe. We envision extending PipeCache to network-wide
monitoring and store monitoring data in exactly one location in the network.

ACKNOWLEDGEMENTS

We would like to thank Amedeo Sapio, Gianni Antichi, the anonymous reviewers, and our shepherd
K.K. Ramakrishnan for their insightful comments. This work has been partially supported by the
Swedish Research Council (agreement No. 2021-04212), KTH Digital Futures, and CNPq/SAAB (No.
200220/2020-9).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:23

REFERENCES

[1] PipeCache code repository. https://bitbucket.org/pipecache/pipecache-simulations/.
[2] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. HeteroSketch: Coordinating network-wide monitoring in

heterogeneous and dynamic networks. In 19th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 22), pages 719–741, Renton, WA, April 2022. USENIX Association.
[3] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat. Hedera: Dynamic

flow scheduling for data center networks. In Proceedings of the 7th USENIX Conference on Networked Systems Design

and Implementation, NSDI’10, page 19, USA, 2010. USENIX Association.
[4] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut,

Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav, and George Varghese. Conga: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, page 503–514,
New York, NY, USA, 2014. Association for Computing Machinery.

[5] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. Pias: Practical information-agnostic flow
scheduling for commodity data centers. IEEE/ACM Trans. Netw., 25(4):1954–1967, aug 2017.

[6] Diogo Barradas, Nuno Santos, Luís Rodrigues, Salvatore Signorello, Fernando M. V. Ramos, and André Madeira.
Flowlens: Enabling efficient flow classification for ml-based network security applications. In 28th Annual Network

and Distributed System Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet Society, 2021.
[7] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau Feibish, Danny Raz, and Minlan Yu. Routing oblivious

measurement analytics. In 2020 IFIP Networking Conference (Networking), pages 449–457, 2020.
[8] Ran Ben Basat, Gil Einziger, Shir Landau Feibish, Jalil Moraney, and Danny Raz. Network-wide routing-oblivious

heavy hitters. In Proceedings of the 2018 Symposium on Architectures for Networking and Communications Systems,
ANCS ’18, page 66–73, New York, NY, USA, 2018. Association for Computing Machinery.

[9] Ran Ben Basat, Gil Einziger, Isaac Keslassy, Ariel Orda, Shay Vargaftik, and Erez Waisbard. Memento: Making sliding
windows efficient for heavy hitters. In Proceedings of the 14th International Conference on Emerging Networking

EXperiments and Technologies, CoNEXT ’18, page 254–266, New York, NY, USA, 2018. Association for Computing
Machinery.

[10] Ran Ben Basat, Gil Einziger, and Bilal Tayh. Cooperative network-wide flow selection. In 2020 IEEE 28th International

Conference on Network Protocols (ICNP), pages 1–11, 2020.
[11] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. Designing heavy-hitter detection algorithms for

programmable switches. IEEE/ACM Transactions on Networking, 28(3):1172–1185, 2020.
[12] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C. Luizelli, and ErezWaisbard. Constant time updates in hierarchical

heavy hitters. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, SIGCOMM
’17, page 127–140, New York, NY, USA, 2017. Association for Computing Machinery.

[13] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi, Minian Yu, and Michael Mitzenmacher.
Pint: Probabilistic in-band network telemetry. In Proceedings of the Annual Conference of the ACM Special Interest Group

on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’20, page 662–680, New York, NY, USA, 2020. Association for Computing Machinery.

[14] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando Mujica, and Mark
Horowitz. Forwarding metamorphosis: Fast programmable match-action processing in hardware for sdn. SIGCOMM

Comput. Commun. Rev., 43(4):99–110, aug 2013.
[15] Broadcom. Tomahawk3 - BCM56980 12.8 Tb/s Multilayer Switch , 2019. https://docs.broadcom.com/doc/56980-DS.
[16] Broadcom. Tomahawk4, 2019. https://docs.broadcom.com/doc/12398014.
[17] CAIDA. The caida ucsd anonymized internet traces - 20190117., 2019. https://docs.broadcom.com/doc/12398014.
[18] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. Beaucoup: Answering many network

traffic queries, one memory update at a time. In Proceedings of the Annual Conference of the ACM Special Interest Group

on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’20, page 226–239, New York, NY, USA, 2020. Association for Computing Machinery.

[19] Marco Chiesa, Guy Kindler, and Michael Schapira. Traffic engineering with equal-cost-multipath: An algorithmic
perspective. IEEE/ACM Trans. Netw., 25(2):779–792, 2017.

[20] Vitalii Demianiuk, Sergey Gorinsky, Sergey I. Nikolenko, and Kirill Kogan. Robust distributed monitoring of traffic
flows. IEEE/ACM Transactions on Networking, 29(1):275–288, 2021.

[21] Damu Ding, Marco Savi, Gianni Antichi, and Domenico Siracusa. An incrementally-deployable p4-enabled architecture
for network-wide heavy-hitter detection. IEEE Transactions on Network and Service Management, 17(1):75–88, 2020.

[22] fcm project. Fcm-sketch: Generic network measurements with data plane support (github), 2021.
[23] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer Rexford, and Fred True. Deriving traffic

demands for operational ip networks: Methodology and experience. SIGCOMM Comput. Commun. Rev., 30(4):257–270,
aug 2000.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

https://bitbucket.org/pipecache/pipecache-simulations/
https://docs.broadcom.com/doc/56980-DS
https://docs.broadcom.com/doc/12398014
https://docs.broadcom.com/doc/12398014

8:24 Marco Chiesa and Fábio L. Verdi

[24] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the analysis of a near-optimal
cardinality estimation algorithm. In Discrete Mathematics and Theoretical Computer Science, pages 137–156. Discrete
Mathematics and Theoretical Computer Science, 2007.

[25] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali, and Amin Firoozshahian. Drill: Micro load balancing
for low-latency data center networks. In Proceedings of the Conference of the ACM Special Interest Group on Data

Communication, SIGCOMM ’17, page 225–238, New York, NY, USA, 2017. Association for Computing Machinery.
[26] Vladimir Gurevich and Andy Fingerhut. P4_16 Programming for Intel Tofino using Intel P4 Studio, 2021. https:

//opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf.
[27] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W. Moore, Gianni Antichi, and Marcin

Wójcik. Re-architecting datacenter networks and stacks for low latency and high performance. In Proceedings of the

Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’17, page 29–42, New York, NY, USA,
2017. Association for Computing Machinery.

[28] Zijun Hang, Mei Wen, Yang Shi, and Chunyuan Zhang. Interleaved sketch: Toward consistent network telemetry for
commodity programmable switches. IEEE Access, 7:146745–146758, 2019.

[29] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. Network-wide heavy hitter detection with commodity
switches. In Proceedings of the Symposium on SDN Research, SOSR ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

[30] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. Network-wide heavy hitter detection with commodity
switches. In Proceedings of the Symposium on SDN Research, SOSR ’18, New York, NY, USA, 2018. Association for
Computing Machinery.

[31] Rob Harrison, Shir Landau Feibish, Arpit Gupta, Ross Teixeira, S. Muthukrishnan, and Jennifer Rexford. Carpe
elephants: Seize the global heavy hitters. In Proceedings of the Workshop on Secure Programmable Network Infrastructure,
SPIN ’20, page 15–21, New York, NY, USA, 2020. Association for Computing Machinery.

[32] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna Sperotto, and Aiko Pras. Flow
monitoring explained: From packet capture to data analysis with netflow and ipfix. IEEE Communications Surveys

Tutorials, 16(4):2037–2064, 2014.
[33] Qun Huang, Patrick P. C. Lee, and Yungang Bao. Sketchlearn: Relieving user burdens in approximate measurement

with automated statistical inference. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data

Communication, SIGCOMM ’18, page 576–590, New York, NY, USA, 2018. Association for Computing Machinery.
[34] Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang, Yanwei Xu, and Gong Zhang. Toward Nearly-Zero-

Error sketching via compressive sensing. In 18th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 21), pages 1027–1044. USENIX Association, April 2021.
[35] Qun Huang, Haifeng Sun, Patrick P. C. Lee, Wei Bai, Feng Zhu, and Yungang Bao. Omnimon: Re-architecting network

telemetry with resource efficiency and full accuracy. In Proceedings of the Annual Conference of the ACM Special

Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer

Communication, SIGCOMM ’20, page 404–421, New York, NY, USA, 2020. Association for Computing Machinery.
[36] Ian Cox. Broadcom Tomahawk4: Industry’s Highest Bandwidth Chip, 2019. https://www.youtube.com/watch?v=B-

COGMbaUg4.
[37] Intel. P416 intel tofino native architecture - public version, 2021.
[38] Intel. P416 Intel® Tofino™ Native Architecture – Public Version, 2021. https://github.com/barefootnetworks/Open-

Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf.
[39] Intel. Intel Tofino 3 Intelligent Fabric Processor Brief, 2022. https://www.intel.com/content/www/us/en/products/

network-io/programmable-ethernet-switch/tofino-3-brief.html.
[40] Intel Research Academy Forum (confidential access only). TX at ingress stage, 2021. https://community.intel.com/t5/

Intel-Connectivity-Research/TX-at-ingress-stage/m-p/1284697/highlight/true#M2362.
[41] Rhongho Jang, DaeHong Min, SeongKwang Moon, David Mohaisen, and DaeHun Nyang. Sketchflow: Per-flow system-

atic sampling using sketch saturation event. In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications,
pages 1339–1348, 2020.

[42] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion Stoica.
Netcache: Balancing key-value stores with fast in-network caching. In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, page 121–136, New York, NY, USA, 2017. Association for Computing Machinery.
[43] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer Rexford. Hula: Scalable load balancing

using programmable data planes. SOSR ’16: Proceedings of the Symposium on SDN Research, (10):1–12, mar 2016.
[44] Xin Zhe Khooi, Levente Csikor, Jialin Li, and Dinil Mon Divakaran. In-network applications: Beyond single switch

pipelines. In 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), pages 1–8, 2021.
[45] Xin Zhe Khooi, Levente Csikor, Jialin Li, Min Suk Kang, and Dinil Mon Divakaran. Revisiting heavy-hitter detection

on commodity programmable switches. In 2021 IEEE 7th International Conference on Network Softwarization (NetSoft),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Vladimir-Gurevich-Slides.pdf
https://www.youtube.com/watch?v=B-COGMbaUg4
https://www.youtube.com/watch?v=B-COGMbaUg4
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://community.intel.com/t5/Intel-Connectivity-Research/TX-at-ingress-stage/m-p/1284697/highlight/true#M2362
https://community.intel.com/t5/Intel-Connectivity-Research/TX-at-ingress-stage/m-p/1284697/highlight/true#M2362

Network Monitoring on Multi-Pipe Switches 8:25

pages 79–87, 2021.
[46] Abhishek Kumar, Minho Sung, Jun (Jim) Xu, and Jia Wang. Data streaming algorithms for efficient and accurate

estimation of flow size distribution. In Proceedings of the Joint International Conference on Measurement and Modeling

of Computer Systems, SIGMETRICS ’04/Performance ’04, page 177–188, New York, NY, USA, 2004. Association for
Computing Machinery.

[47] Kumar, Gautam and Zhang, Yiwen and Dukkipati, Nandita and Wu, Xian and Vahdat, Amin. Admission Control
for Latency-Critical Remote Procedure Calls in Datacenters, 2022. United States Patent Application 20220239598
https://www.freepatentsonline.com/y2022/0239598.html.

[48] Jan Kučera, Diana Andreea Popescu, Han Wang, Andrew Moore, Jan Kořenek, and Gianni Antichi. Enabling event-
triggered data plane monitoring. In Proceedings of the Symposium on SDN Research, SOSR ’20, page 14–26, New York,
NY, USA, 2020. Association for Computing Machinery.

[49] Anukool Lakhina, Mark Crovella, and Christiphe Diot. Characterization of network-wide anomalies in traffic flows. In
Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, IMC ’04, page 201–206, New York, NY,
USA, 2004. Association for Computing Machinery.

[50] Jonatan Langlet, Ran Ben-Basat, Sivaramakrishnan Ramanathan, Gabriele Oliaro, Michael Mitzenmacher, Minlan Yu,
and Gianni Antichi. Zero-cpu collection with direct telemetry access. In Proceedings of the Twentieth ACMWorkshop on

Hot Topics in Networks, HotNets ’21, page 108–115, New York, NY, USA, 2021. Association for Computing Machinery.
[51] Yiran Li, Kevin Gao, Xin Jin, and Wei Xu. Concerto: Cooperative network-wide telemetry with controllable error rate.

In Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys ’20, page 114–121, New York, NY,
USA, 2020. Association for Computing Machinery.

[52] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. FlowRadar: A better NetFlow for data centers. In 13th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 16), pages 311–324, Santa Clara, CA, March 2016.
USENIX Association.

[53] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman. One sketch to rule them all:
Rethinking network flow monitoring with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM
’16, page 101–114, New York, NY, USA, 2016. Association for Computing Machinery.

[54] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon Kim, Xin Jin, Vladimir Braverman,
Minlan Yu, and Vyas Sekar. Jaqen: AHigh-Performance Switch-Native approach for detecting andmitigating volumetric
DDoS attacks with programmable switches. In 30th USENIX Security Symposium (USENIX Security 21), pages 3829–3846.
USENIX Association, August 2021.

[55] Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas SekaR, and Peter Steenkiste. Telemetry Retrieval Inaccuracy in

Programmable Switches: Analysis and Recommendations, page 176–182. Association for Computing Machinery, New
York, NY, USA, 2021.

[56] HunNamkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste. SketchLib: Enabling efficient sketch-based
monitoring on programmable switches. In 19th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 22), pages 743–759, Renton, WA, April 2022. USENIX Association.
[57] HunNamkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, and Peter Steenkiste. SketchLib: Enabling efficient sketch-based

monitoring on programmable switches. In 19th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 22), Renton, WA, April 2022. USENIX Association.
[58] Sourav Panda, Yixiao Feng, Sameer G Kulkarni, K. K. Ramakrishnan, Nick Duffield, and Laxmi N. Bhuyan. Smartwatch:

Accurate traffic analysis and flow-state tracking for intrusion prevention using smartnics. In Proceedings of the 17th

International Conference on Emerging Networking EXperiments and Technologies, CoNEXT ’21, page 60–75, New York,
NY, USA, 2021. Association for Computing Machinery.

[59] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. Continuous in-network round-trip time monitoring. In
Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page 473–485, New York, NY, USA, 2022. Association
for Computing Machinery.

[60] Vishal Shrivastav. Stateful multi-pipelined programmable switches. In Proceedings of the Conference of the ACM Special

Interest Group on Data Communication, SIGCOMM ’22, 2022.
[61] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrishnan, and Jennifer Rexford. Heavy-hitter

detection entirely in the data plane. In Proceedings of the Symposium on SDN Research, SOSR ’17, page 164–176, New
York, NY, USA, 2017. Association for Computing Machinery.

[62] John Sonchack, Oliver Michel, Adam J. Aviv, Eric Keller, and Jonathan M. Smith. Scaling hardware accelerated network
monitoring to concurrent and dynamic queries with *Flow. In 2018 USENIX Annual Technical Conference (USENIX ATC

18), pages 823–835, Boston, MA, July 2018. USENIX Association.
[63] Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang Low, and Mun Choon Chan. Fcm-sketch: Generic

network measurements with data plane support. In Proceedings of the 16th International Conference on Emerging

Networking EXperiments and Technologies, CoNEXT ’20, page 78–92, New York, NY, USA, 2020. Association for

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

https://www.freepatentsonline.com/y2022/0239598.html

8:26 Marco Chiesa and Fábio L. Verdi

Computing Machinery.
[64] Lu Tang, Qun Huang, and Patrick P. C. Lee. A fast and compact invertible sketch for network-wide heavy flow

detection. IEEE/ACM Transactions on Networking, 28(5):2350–2363, 2020.
[65] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall. Let it flow: Resilient asymmetric load

balancing with flowlet switching. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI

17), pages 407–420, Boston, MA, March 2017. USENIX Association.
[66] Shobha Venkataraman, Dawn Song, Phillip B Gibbons, and Avrim Blum. New streaming algorithms for fast detection

of superspreaders. Technical report, Carnegie-Mellon Univ Pittsburgh Pa School Of Computer Science, 2004.
[67] Fábio Luciano Verdi and Marco Chiesa. Heavy hitter detection on multi-pipeline switches. In Proceedings of the

Symposium on Architectures for Networking and Communications Systems, ANCS ’21, page 121–124, New York, NY,
USA, 2021. Association for Computing Machinery.

[68] Chenxu Wang, Tony T. N. Miu, Xiapu Luo, and Jinhe Wang. Skyshield: A sketch-based defense system against
application layer ddos attacks. IEEE Transactions on Information Forensics and Security, 13(3):559–573, 2018.

[69] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso. Shuhai: Benchmarking high bandwidth memory on
fpgas. In 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM),
pages 111–119. IEEE, 2020.

[70] Jiarong Xing, Qiao Kang, and Ang Chen. Netwarden: Mitigating network covert channels while preserving performance.
In Proceedings of the 29th USENIX Conference on Security Symposium, SEC’20, USA, 2020. USENIX Association.

[71] Kaicheng Yang, Yuanpeng Li, Zirui Liu, Tong Yang, Yu Zhou, Jintao He, Jing’an Xue, Tong Zhao, Zhengyi Jia, and
Yongqiang Yang. Sketchint: Empowering int with towersketch for per-flow per-switch measurement. In 2021 IEEE

29th International Conference on Network Protocols (ICNP), pages 1–12, 2021.
[72] Mingran Yang, Baban Alex, Kugel Valery, Libby Jeff, Mackie Scott, Swamy Sadashivaiah Renu Kananda, Chang-

Hong Wu, and Ghobadi Manya. Using Trio – Juniper Networks’ Programmable Chipset – for Emerging In-Network
Applications. In ACM SIGCOMM ’22.

[73] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic
sketch: Adaptive and fast network-wide measurements. In Proceedings of the 2018 Conference of the ACM Special Interest

Group on Data Communication, SIGCOMM ’18, page 561–575, New York, NY, USA, 2018. Association for Computing
Machinery.

[74] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. Pyramid sketch: A sketch framework for frequency
estimation of data streams. Proc. VLDB Endow., 10(11):1442–1453, aug 2017.

[75] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with opensketch. In Proceedings of the

10th USENIX Conference on Networked Systems Design and Implementation, nsdi’13, page 29–42, USA, 2013. USENIX
Association.

[76] Lior Zeno, Dan R. K. Ports, Jacob Nelson, Daehyeok Kim, Shir Landau Feibish, Idit Keidar, Arik Rinberg, Alon Rashelbach,
Igor De-Paula, and Mark Silberstein. Swish: Distributed shared state abstractions for programmable switches. In
USENIX NSDI 2022. USENIX, April 2022.

[77] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng Liu, Ruwen Zhang, and Junchen
Jiang. Cocosketch: High-performance sketch-based measurement over arbitrary partial key query. In Proceedings of

the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 207–222, New York, NY, USA, 2021. Association for
Computing Machinery.

[78] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu, Naiqian Zheng, Ruixin Wang, HanboWu, Yi Wang,
and Nicholas Zhang. LightGuardian: A Full-Visibility, lightweight, in-band telemetry system using sketchlets. In 18th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 21), pages 991–1010. USENIX Association,
April 2021.

[79] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun Singh, and Amin Vahdat. WCMP:
Weighted CostMultipathing for Improved Fairness in Data Centers. In EuroSys’14, New York, NY, USA, 2014. Association
for Computing Machinery.

[80] Noa Zilberman, Gabi Bracha, and Golan Schzukin. Stardust: Divide and conquer in the data center network. In 16th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pages 141–160, Boston, MA, February
2019. USENIX Association.

APPENDIX

A MOTIVATION (FCM-SKETCH)

In this appendix, we report the analogous graphs of Section 2 for the FCM-Sketch mechanism.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:27

In Figure 23, we observe that it takes roughly ∼ 4x additional memory to achieve an F1-score
above 0.9 with a 16-pipe switch compared to the single-pipe deployment.
In Figure 24, we observe that under the same memory constraints, a single-pipe deployment

reduces ARE by up to a 1000x factor compared to a 16-pipe switch (from roughly 4000% to 4%).
This is visible for a memory utilization of roughly 10Mb.

106 107

amount of chip memory [bit]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F1
-s

co
re

Number of pipes: 1 2 4 8 16

Fig. 23. Impact of multi-pipe deployment on the F1-

score of an FCM-Sketch-like monitoring data struc-

ture.

106 107 108

amount of chip memory [bit]

10−2

100

102

104

106

A
ve

ra
ge

R
el

at
iv

e
E

rr
or

(A
R

E
) 1 2 4 8 16

Fig. 24. Impact of multi-pipe deployment on the

average relative flow estimate error (ARE) of an

FCM-Sketch-like monitoring data structure.

In Figure 25, we report the number of false negatives and false positives for different HH detection
thresholds. With the FCM-Sketch mechanism, we observe an identical level of accuracy degradation
as in Elastic-Sketch. The reason why Elastic-Sketch and FCM-Sketch performs similarly is that
both mechanisms achieve an F1-score of 1 in a single-pipe deployment. The false negatives and
positives are only due to the per-pipe threshold mechanism. We indeed observe that the set of false
positives and false negatives is roughly identical between Elastic-Sketch and FCM-Sketch.

0.0 0.2 0.4 0.6 0.8 1.0

Per-pipe HH detection threshold coefficient

0

50

100

150

N
um

be
ro

ff
al

se
ne

ga
tiv

es 2 4 8 16

100

101

102

103

104

105

106

N
um

be
ro

ff
al

se
po

si
tiv

esNumber of pipes: 2 4 8 16

Fig. 25. Impact on FCM-Sketch of using different per-pipe thresholds on the number of false negative (blue

lines) and false positives (red lines) for different number of pipes using the same amount of per-chip memory.

B EVALUATION (FCM-SKETCH)

For FCM-Sketch, we reduce memory consumption between a factor of 2 − 3.3x for F1-scores above
0.9 (see Figure 26) with a cache memory overhead of 20%. The bandwidth overhead are much lower
than Elastic-Sketch because FCM-Sketch requires higher memory to achieve a high F1-score. This
means that the caches used by PipeCache with FCM-Sketch are also larger than Elastic-Sketch for
for similar F1-scores.

Figure 27 shows the number of true positives and false negatives with FCM-Sketch when using
the fallback mechanism. We observe that also in this case, PipeCache identifies all the 166 heavy
hitters at the cost of a higher number of false positives. We note that the lines at 5% and 20%

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:28 Marco Chiesa and Fábio L. Verdi

recirculation rates overlaps completely as PipeCache recirculates below 5% of the packets. We
observe that the number of false positives goes to 0 with a memory utilization of 86Mb.

106 107 108

amount of chip memory [bit]

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Left y-axis
single pipe
baseline 16-pipe

20% cache
40% cache

10−4

10−3

10−2

B
an

dw
id

th
ov

er
he

ad
[%

]

Right y-axis
20% cache
40% cache

Fig. 26. Accuracy of PipeCache with FCM-Sketch

and packet recirculation.

130

140

150

160

170

Tr
ue

po
si

tiv
es

Left y-axis (recirc. threshold)
0% 5% 20%

106 107 108

amount of chip memory [bit]

10−1

101

103

105

107

Fa
ls

e
po

si
tiv

es

Right y-axis (recirc. threshold)
0% 5% 20%

Fig. 27. Impact of the packet recirculation threshold

with a fallback mechanism with FCM-Sketch.

Packet recirculation. We do not show for FCM-Sketch the graphs that focus on packet recircula-
tion. In fact, packet recirculation overheads do not depend on the monitoring solution but only on
the number of pipes, number of slices, cache sizes, and traffic trace. This means that the lines are
identical to Elastic-Sketch.

C BEAUCOUPWITH ECMP

In this section, we quantify the impact of multi-pipe deployment for the Beaucoup monitoring
system and the gains obtainablewith PipeCache.We spread packets across pipes using ECMP,which
is flow-consistent (i.e., all packets with the same 5-tuple traverse the same pipe). We implement two
queries: super-spreader detection and heavy-hitter detection. Following the design of Beaucoup,
we let each packet only update either the super-spreader detector or the heavy-hitter detector.
Figure 28 and Figure 29 show the F1-score (y-axis) under different memory requirements (x-axis)
for Beaucoup deployed on a single-pipe, Beaucoup deployed on a 16-pipe switch, and PipeCache
deployed together with Beaucoup on a 16-pipe switch.

105 106 107 108 109

amount of chip memory [bit]

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

14x

16
-p

ipe
Bea

uc
ou

p

16
-p

ipe
BC

+ Pipe
Cac

he

1-
pip

e Bea
uc

ou
p (B

C)

Fig. 28. Accuracy of PipeCache when extending

Beaucoup for the super-spreader monitoring task

(with ECMP packet spreading).

105 106 107 108 109

amount of chip memory [bit]

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

1-pipe-Beaucoup (BC)
16-pipe-BC+PipeCache
16-pipe-Beaucoup

Fig. 29. Accuracy of PipeCache when extending

Beaucoup for the heavy-hitter monitoring task (with

ECMP packet spreading).

We observe that the memory requirement gains for the super-spreader task (Fig. 28) are consistent
with those observed when the packets were spread using per-packet-random (Fig. 20). This is an

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:29

intuitive result since a traffic class in the super spreader monitoring task aims at detecting IP
source address with many distinct destinations. Since the CAIDA trace contains many IP source
addresses with multiple destinations, even with an ECMP packet spreader, information about the
same IP source address would be stored at different pipes. Conversely, the memory gains for the
heavy-hitter monitoring task (Fig. 29) almost disappears when packets are spread using ECMP
instead of using per-packet-random (Fig 21). This can be explained as follows. In the heavy-hitter
monitoring task, a traffic class consists of an IP-pair and, in the CAIDA trace, different IP pairs tend
to have one or a few different 5-tuple connections. This means that most flows traverse a single
or a few pipes and therefore their information is not spread across all pipes. It is worth observing
that PipeCache still brings some small gains. It is worth noting that, even in the absence of gains
for one or more monitoring tasks, an operator should deploy PipeCache whenever at least one
monitoring task the gains are significant. We note that PipeCache could be deployed in Beaucoup
just for the monitoring tasks that exhibit large gains by using PipeCache. For the other queries
that do not exhibit large gains (e.g., heavy-hitter monitoring), one should fallback to a traditional
approach and avoid allocating cache memory for updating their data structures.

D FLOWLENSWITH A FLOW CONSISTENT PACKET SPREADER (ECMP)

We now show how PipeCache performs on workloads where packets belonging to the same
monitored traffic class do not spread across different pipes. We consider the same implementation
of FlowLens used for Figure 22 but we now spread packets across pipes using ECMP. Since a traffic
class in FlowLens is a 5-tuple and ECMP is flow-consistent, this means that all packets belonging
to the same monitored traffic class will traverse a single ingress and egress pipe. Figure 30 shows
the number of accurately estimated per-flow packet-length distributions (y-axis) under different
memory requirements (x-axis) using either a single-pipe (cross marks) or a 16-pipe FlowLens
baseline deployments (square marks) or PipeCache with FlowLens (triangle marks).

106 107 108 109

amount of chip memory [bit]

104

105

106

#
ac

cu
ra

te
ly

cl
as

si
fie

d
flo

w
s 1-pipe-FlowLens (FL)

16-pipe-FL+PipeCache
16-pipe-FlowLens

Fig. 30. Accuracy of PipeCache when extending FlowLens for computing the packet-length distribution of

the 5-tuple connections with ECMP packet spreading.

We can observe that all the lines are close to each other. PipeCache retains the same accuracy of
the baselines, however, with the additional cost of storing the cache data structure.
We now show that, however, when there are traffic imbalances across pipes, PipeCache may

lead to memory savings. We therefore quantify the memory requirement gains of using PipeCache
when the traffic across the pipes is imbalanced. We replay the CAIDA trace with a level of imbalance
of 31. Figure 31 shows the number of accurately estimated per-flow packet-length distributions
(y-axis) under different memory requirements (x-axis) using either a single-pipe (cross marks) or

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

8:30 Marco Chiesa and Fábio L. Verdi

a 16-pipe FlowLens baseline deployments (square marks) or PipeCache with FlowLens (triangle
marks). Our results show that, even when each single traffic class does not spread across different
pipes, PipeCache reduces the memory requirements up to a factor of 2x under an imbalanced
traffic workload.

106 107 108 109

amount of chip memory [bit]

104

105

106
#

ac
cu

ra
te

ly
cl

as
si

fie
d

flo
w

s

2x

1-pipe-FlowLens (FL)
16-pipe-FL+PipeCache
16-pipe-FlowLens

Fig. 31. Accuracy of PipeCache when extending FlowLens for computing the packet-length distribution of

the 5-tuple connections with ECMP packet spreading under a high imbalance.

E SINGLE- VS. ALL- EGRESS-PIPE CACHE DEPLOYMENT

A natural question to ask when using PipeCache is whether it is best to deploy an existing
monitoring solution across all egress pipes or just on one single egress pipe as was done in a
previous work [67]. In the all-egress-pipes deployment scenario, we use all the egress pipes to store
per-traffic-class statistics so that each traffic class is stored exactly in one of those egress pipes. In
the single-egress-pipe deployment scenario, we store all the traffic classes in exactly one single egress
pipe, i.e., the other egress pipes do not store anything. A single-egress-pipe deployment simplifies
the logic of the system and can potentially better absorb bursty traffic as explained in the following.
Consider an 8-pipe switch in which we deploy all the monitoring data structures on a single egress
pipe, for instance, Pipe 1. Assume we use two slices. Since there is a single egress pipe, we only
need to deploy two caches in one ingress pipe: one cache for each of the two slices. Conversely,
in a deployment where we store the monitoring data structures across all pipes, we would need
16 caches (two slices times eight egress pipes). Having fewer caches means that, under the same
memory constraints, one can configure larger caches in the single-egress-deployment compared to
the all-egress-pipes deployment, which helps in absorbing bursty traffic. There is however a cost in
using a single-egress-pipe deployment: one needs more slices (than an all-egress-pipe deployment)
to prevent the cache occupancy to grow indefinitely even under uniformly-balanced traffic across
pipes. Consider the same calculations that we carried out in Section 3.2 and assume a uniform
spreading of the packets across all egress pipes. With a single-pipe-deployment, a fraction 𝜂 = 1

8 of
the packets go to the only monitoring pipe (e.g., Pipe 1) and all packets (i.e., 𝛾 = 1) must be stored on
that pipe. This means that one needs > 8 slices to keep the cache occupancy low. Conversely, in an
all-egress-pipes deployment, we have that only a fraction 𝛾 = 1

8 of the packets have Pipe 1 as their
monitoring pipe. This means that two slices are sufficient to prevent the cache occupancy from
growing indefinitely under uniform traffic balance across pipes. We evaluate these two approaches
in Section 5.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

Network Monitoring on Multi-Pipe Switches 8:31

We compare the two PipeCache deployment approaches described in Section 3: when we deploy
an existing monitoring mechanism (e.g., Elastic-Sketch) on just one single egress pipe (which uses
larger per-slice caches) or across all of them (which uses smaller per-slice caches).

105 106 107 108

amount of chip memory [bit]

10−3

10−2

10−1

100

101

102

R
ec

irc
ul

at
ed

pa
ck

et
s

[%
]

Number of pipes, deployment mode:
4-pipe, all
8-pipe, all
16-pipe, all

4-pipe, single
8-pipe, single
16-pipe, single

Fig. 32. All-egress-pipes vs. single-egress-pipe.

Figure 32 shows the percentage of recirculated packets (y-axis) over the amount of utilized mem-
ory for both single-egress-pipe (reddish lines) and all-egress-pipes (bluish lines) cache deployments
and for different number of pipes, i.e., with 4 (triangle marks), 8 (square marks), and 16 (circle
marks) pipes. We set the memory cache overhead to 20% and use 4 slices. Our results show that the
percentage of recirculated packets for all single-egress-pipe cache deployments remains stable even
when additional memory is used. The reason lies in the calculations of Section 3: not enough packets
to drain the cache. Conversely, all-egress-pipe reduces the percentage of recirculated packets when
increasing the memory utilization.

F BACKGROUND ON HEAVY HITTERS AND SUPER SPREADERS

We provide some minimal background on heavy hitters and super spreaders.
Heavy hitters. A heavy hitter in a networking context is a traffic class that contributes to a large
fraction of the forwarded traffic. There exist a variety of definitions for heavy hitters. One may
define a heavy hitter based on a static threshold that defines the minimum number of packets to
characterize a heavy hitter. Alternatively, a heavy hitter may be defined as a fraction of a traffic or
as the top k traffic classes in a traffic trace. Most existing works on ASIC switches rely on thresholds
as these are simpler to realize in hardware [42, 63]. In this work, we also consider a threshold based
approach. Analyzing the memory benefits of PipeCache with other heavy hitter definitions is left
as future work.
Super spreaders.While a heavy hitter is a traffic class that generates a large fraction of traffic, a
super spreader is a traffic class that either generates traffic towards many destinations or receives
traffic from many sources (as in a DDoS attack [18]). The common way to detect super spreaders is
to rely on approximate data structures for counting distinct elements such as HyperLogLog [24, 66].

Received August 2022; revised October 2022; accepted January 2023

Proc. ACM Meas. Anal. Comput. Syst., Vol. 7, No. 1, Article 8. Publication date: March 2023.

	Abstract
	1 Introduction
	2 Motivation and Traffic Analysis
	2.1 Multi-pipe switch architectures
	2.2 Deployment Issues
	2.3 Traffic Analysis

	3 System Design
	3.1 Overview
	3.2 Design
	3.3 Tackling Hardware Constraints

	4 Implementation
	5 Evaluation
	6 Discussion
	6.1 Conditions for Memory Gains in PipeCache
	6.2 PipeCache limitations
	6.3 PipeCache and covert channel attacks
	6.4 Deployment beyond ASIC switches

	7 Related Work
	8 Conclusions
	References
	A Motivation (FCM-Sketch)
	B Evaluation (FCM-Sketch)
	C Beaucoup with ECMP
	D FlowLens with a Flow Consistent Packet Spreader (ECMP)
	E Single- vs. All- Egress-Pipe Cache Deployment
	F Background on Heavy hitters and Super spreaders

