
Priority-Aware Preemptive Scheduling for Mixed-Priority
Workloads in MoE Inference

Mohammad Siavashi

KTH Royal Institute of Technology

Stockholm, Sweden

Faezeh Keshmiri Dindarloo
∗

Unaffiliated Researcher

Stockholm, Sweden

Dejan Kostić

KTH Royal Institute of Technology

Stockholm, Sweden

Marco Chiesa

KTH Royal Institute of Technology

Stockholm, Sweden

Abstract
Large Language Models have revolutionized natural language pro-

cessing, yet serving them efficiently in data centers remains chal-

lenging due to mixed workloads comprising latency-sensitive (LS)

and best-effort (BE) jobs. Existing inference systems employ iteration-

level first-come-first-served scheduling, causing head-of-line block-

ing when BE jobs delay LS jobs. We introduce QLLM, a novel in-

ference system designed for Mixture of Experts (MoE) models, fea-

turing a fine-grained, priority-aware preemptive scheduler. QLLM

enables expert-level preemption, deferring BE job execution while

minimizing LS time-to-first-token (TTFT). Our approach removes

iteration-level scheduling constraints, enabling the scheduler to pre-

empt jobs at any layer based on priority. Evaluations on an Nvidia

A100 GPU show that QLLM significantly improves performance.

It reduces LS TTFT by an average of 65.5× and meets the SLO at

up to 7 requests/sec, whereas the baseline fails to do so under the

tested workload. Additionally, it cuts LS turnaround time by up to

12.8× without impacting throughput. QLLM is modular, extensible,

and seamlessly integrates with Hugging Face MoE models.

CCS Concepts
• Software and its engineering→ Software performance; •
Computing methodologies→ Neural networks.

Keywords
Large Language Models, Mixture-of-Experts, Preemptive Schedul-

ing, Latency-Sensitive Inference, GPU Acceleration, Priority-Aware

Scheduling

ACM Reference Format:
Mohammad Siavashi, Faezeh Keshmiri Dindarloo, Dejan Kostić, and Marco

Chiesa. 2025. Priority-Aware Preemptive Scheduling for Mixed-Priority

Workloads in MoE Inference. In Proceedings of 5th Workshop on Machine
Learning and Systems (EuroMLSys ’25). ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3721146.3721956

∗
Work done while at KTH Royal Institute of Technology

ACM ISBN 979-8-4007-1538-9/25/03

https://doi.org/10.1145/3721146.3721956

1 Introduction
Large Language Models (LLMs) have significantly advanced the

domain of Natural Language Processing (NLP), enabling tasks such

as machine translation, summarization [16, 20, 23], code synthesis

and completion [4], and conversational AI [1, 22]. The Mixture of

Experts (MoE) architecture [11], a transformer variant that selec-

tively activates subsets of specialized feedforward layers per token,

has emerged as the preferred paradigm for large-scale models that

can attain superior performance while ensuring rapid inference.

Although the model in its entirety can be extensive (e.g., 671 B pa-

rameters for DeepSeek-R1 [6]), the selective activation of so-called

experts can substantially reduce inferencing costs and subsequently

enhance adoption [13].

Data centers serving LLMs typically handle two types of re-

quests: high priority, which are latency-sensitive (LS), and low prior-

ity, which are best-effort (BE) [26, 28]. High priority requests might

originate from users with paid subscriptions that include a Service
Level Objective (SLO) agreement or from interactive applications

like ChatBots. In contrast, BE requests could come from users on

free tiers or throughput-oriented jobs such as document summa-

rization [28]. Consequently, inference systems must identify and

differentiate between LS and BE requests, ensuring low time-to-
first-token (TTFT) and quick turnaround time for LS jobs while

maintaining high throughput for BE jobs.

Current large-scale inference systems for LLMs, such asOrca [10],

vLLM [27], and Hugging Face (HF) TGI [7], predominantly employ

iteration-level scheduling, where new jobs are incorporated, and

completed jobs are removed only at the end of each iteration. While

this approach enables efficient batching, it adheres to a first-come-
first-served (FCFS) strategy, treating all inference jobs equally and

failing to prioritize LS jobs over BE workloads. As a result, LS

jobs frequently experience head-of-line (HOL) blocking [12], where

large BE jobs with long input and output sequences monopolize

resources, delaying LS execution. These delays are particularly pro-

nounced in LLM inference workloads, where request sizes vary

significantly, exacerbating scheduling inefficiencies. Addressing

this issue requires an inference system capable of distinguishing

between LS and BE jobs, reacting to LS job arrivals with minimal

delay, and enabling fine-grained preemption of BE computations to

improve overall system responsiveness.

The dynamic top-k token routing inherent to MoE architectures

necessitates granular state management: preempted sequences

must retain not only their KV cache, but also expert assignments,

routing metadata, and partial computations of the k selected experts

132

This work is licensed under a Creative Commons Attribution 4.0 
Interna-tional License.
EuroMLSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

https://orcid.org/0000-0002-2600-9025
https://orcid.org/0009-0008-2161-0437
https://orcid.org/0000-0002-1256-1070
https://orcid.org/0000-0002-9675-9729
https://doi.org/10.1145/3721146.3721956
https://doi.org/10.1145/3721146.3721956
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3721146.3721956&domain=pdf&date_stamp=2025-04-01


EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Mohammad et al.

to ensure deterministic resumption [25]. Fine-grained preemptive

scheduling is becoming increasingly feasible with modern hard-

ware advancements, such as NVLink’s low-latency interconnects

[19] and unified memory architectures [18], which are becoming

increasingly prevalent in data centers. However, these advance-

ments also require specialized scheduling mechanisms tailored to

contemporary MoE models.

This paper introduces QLLM, an inference system that reduces

LS job latency in MoE models through fine-grained preemption

and priority-aware scheduling at the expert level. QLLM features:

(1) a redesigned MoE layer with per-expert queues for dynamic

buffering and low-overhead state management, and (2) a priority-

aware scheduler that mitigates HOL blocking by distinguishing LS

and BE jobs. Unlike existing inference systems using iteration-level

execution, QLLM allows independent expert processing, allowing

LS jobs to preempt BE jobs without discarding intermediate com-

putations. An efficient state management mechanism preserves

execution progress, allowing seamless BE resumption. The sched-

uler optimizes LS latency while maintaining high throughput.

Our evaluation on an Nvidia A100 80 GB GPU shows that QLLM

reduces TTFT by up to 101.6× (avg. 65.2×), enabling SLO compli-

ance for up to 7 jobs per second. QLLM maintains comparable or

higher throughput than existing systems and reduces LS turnaround

time by up to 12.8×.
Our work makes the following contributions:

Novel MoE Layer Design: We introduce per-expert queues to

enable token buffering and deferred execution, eliminating rigid

layer-wise synchronization. This design allows independent expert

execution, enhancing scheduling flexibility.

Priority-Aware Scheduler: QLLM incorporates a scheduler that

differentiates LS and BE jobs, ensuring low-latency scheduling and

efficient GPU resource allocation.

Fine-Grained Expert-Level Preemption: QLLM enables BE job

preemption at the expert level, reducing LS job queuing delays.

This is achieved via a lightweight state management mechanism,

a unified KV cache abstraction for batch updates, and per-expert

queuing.

Real-World Evaluation: We evaluate QLLM on real hardware

with Mixtral 8×7B, demonstrating improved LS job latency while

maintaining high throughput.

Modular and Extensible Framework: QLLM integrates seam-

lessly with Hugging Face MoE models with minimal modifications

(e.g., class inheritance), facilitating deployment, extensibility, and

further research in MoE inference.

This paper discusses our initial findings, a preliminary evalua-

tion, and limitations. Our ultimate plan is to release QLLM as an

open-source project in future versions.

2 Background and Motivation
2.1 Mixture of Experts Models
MoE models are a type of transformer model [29] designed to en-

hance computational efficiency in LLMs by selectively activating

only a subset of parameters during inference. Unlike dense trans-

former models, which process all tokens through fully activated

feedforward layers, MoE replaces these layers with multiple expert

networks and a router that assigns each token to the most relevant

experts. This selective activation reduces computational overhead

while preserving the overall capacity of the model [13, 25]. State-of-

the-art MoE models, such as Mixtral [11], OpenAI GPT-4 [3], and

DeepSeek v3 [5], exemplify this architecture.

2.2 Prefill and Decode Phases
In an LLM, each transformer layer’s self-attention mechanism de-

termines token interactions using key (K) and value (V) tensors. To

generate new tokens efficiently, the model stores KV pairs of all pre-

vious tokens in a KV cache, reducing redundant computation and

improving inference speed [14, 15]. The output of self-attention is

then passed to a per-layer router, which selects experts responsible

for generating the final output.

LLM inference consists of two phases: prefill and decode. Prefill
processes input tokens in parallel, generating KV cache entries

while producing a single output token. Decode operates iteratively,

generating one token at a time while leveraging and updating the

KV cache. Prefill is compute-intensive due to self-attention across

all tokens, whereas decode is memory-intensive as it computes self-

attention only between the new token and previous ones [2, 10, 33].

2.3 Challenges in Existing Inference Systems
Modern LLM inference systems employ iteration-level scheduling

[10, 17, 27], where a batch of jobs (i.e., prompts) is processed to-

gether, generating one token per job per iteration. An iteration

corresponds to a full execution of all model layers. Building upon

this, continuous batching, as implemented in vLLM and HF TGI, dy-

namically updates batch composition at every iteration. It removes

completed jobs and adds new ones to maintain batch efficiency. If

new jobs arrive and a decode batch has available space, the sched-

uler stops decoding, prefills the new arrivals, and extends the batch

for the next decode iteration [8]. Then, the scheduler runs the

decode batch in a run-to-completion fashion, meaning iterations

continue until the full response of a job is generated.

Existing inference engines typically pad and concatenate input

tensors from multiple jobs into a single tensor before execution. Al-

though this improves computation efficiency in run-to-completion

systems, it complicates the isolation and updating of individual jobs

within inner layers. Since model layers only see low-level tensors,

oblivious to corresponding sequences, tracking state updates for

each sequence becomes inherently difficult and expensive; thus,

state updates for sequences occur only at the iteration level.

For instance, if such a layer-level scheduler operates with a de-

fined policy that preempts tasks based on memory limitations in

inner layers, it necessitates the extraction of the token from the

running batch tensors. This extraction demands costly structural

transformation operations on the tensors to accurately retrieve

and preserve the token’s state such as kv cache entries, attention

mask, hidden states, residuals, routing information, and associated

metadata. Additionally, when restoring a preempted token, the sys-

tem must not only reload its exact state, but also reconfigure its

tensors (e.g., by padding the KV cache) to ensure seamless inte-

gration with the current running batch, a process susceptible to

shape mismatches. Moreover, since current inference systems do

not track individual sequences within inner layers (i.e., models only

see tensors internally), dynamically modifying batch composition

133



Fine-Grained Preemption and Priority-Aware Scheduling in LLMs EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

can disrupt data flow, resulting in outputs that no longer align with

their corresponding inputs. Such challenges render traditional in-

ference systems impractical for achieving fine-grained scheduling

at the layer or expert level.

2.4 Limitations of Preemption in Current
Systems

Current inference systems are priority-oblivious. This, combined

with the run-to-completion approach of the schedulers, causes de-

lays for LS jobs as they await the completion of time-consuming

BE jobs. As a result, the queueing time for LS jobs increases, con-

siderably prolonging TTFT and turnaround time, the duration from

when a job enters the system until its response is fully generated.

This issue is known as HOL blocking in the scheduling context,

where extended processing of BE jobs influences the latency of LS

jobs [12, 32].

In iteration-level scheduling, there exists a potential for systems

to decide on preemption at the granularity of token generation

[31]. Nevertheless, the increasing number of layers and the strong

inter-layer dependencies inherently introduce significant delays

until the subsequent iteration. In our experiments, conducted on the

A100 with the Mixtral 8x7B model, each decode iteration requires

300-400ms. For instance, if a BE job is processing at the first layer

when an LS job arrives, the entire iteration execution time will be

appended to the LS job’s TTFT until it has the opportunity to be

scheduled in the next iteration.

An efficient scheduling strategy should have low overhead and

support fine-grained job preemption and context switching. It also

needs to dynamically prioritize LS jobs to reduce TTFT without

significantly affecting system throughput. A strong solution should

meet these challenges with minimal model changes, ensuring com-

patibility across frameworks.

3 QLLM Design Overview
Effectively handling mixed-priority workloads requires rethinking

the scheduling and inference engine components with the goal of

enabling rapid preemption of jobs and context switching at the

granularity of experts.

3.1 Challenges and Design Decisions
We set the following objectives when developing QLLM.

Generic and lowoverhead preemptionmechanism. Fine-grained
control of the system state (e.g., KV caches, hidden states) within

the inner layers and orchestration of the execution flow is a generic

need in LLM serving systems. We use a centralized state manage-

ment mechanism for sequences and batches that enables real-time

tracking and updating of sequence states within layers, avoiding

delayed updates at the iteration level.

Minimizing LS Job latency without sacrificing throughput.
The key challenge is reacting to high-priority workloads with fine-

grained timing. To address this, QLLM implements a priority-aware

scheduler working in tandem with a low-overhead preemption

mechanism, enabling scheduling decisions at each layer to optimize

LS task responsiveness while maintaining efficient execution flow.

Unified sequence and batchmanagement. In contrast to current
systems that keep concatenated batch tensors throughout response

generation, a system such as QLLM requires manipulating the

batch within inner layers due to context switching. Therefore, we

designed a unified lifecycle management abstraction, which encap-

sulates all sequence-associated states and metadata into a sequence

and batch framework. This framework simulates a single batch

tensor to ensure compatibility with existing models, while also al-

lowing asynchronous updates to each sequence’s individual tensors

using a facade pattern abstraction.

User-defined scheduling policies. Tailored scheduling policies

specific to the workload can optimize performance in various sys-

tems. QLLM facilitates user-defined scheduling policies (in Python)

at the expert level by employing a checkpointing mechanism along-

side a closed-loop controller system.

Top-k expert selection. Top-k expert selection for each token is

an additional challenge for preemptive schedulers. To maximize

QLLM’s flexibility for user-defined policies, we need a solution that

enables partial processing with preemption while avoiding queue

stalls due to delayed experts. Our per-expert queuing and single

source of truth for state management make this efficient by pushing

sequence references into multiple queues and tracking outputs as

state. QLLM distinguishes fully from partially processed tokens,

ensuring only complete tokens contribute to the hidden state of the

next layer.

Modular architecture. QLLM addresses architectural bottlenecks

in systems like vLLM [30] by adopting a modular and extensible

design. Through modularization, encapsulation, and dependency in-
jection, it decouples the system logic, minimizing interdependencies,

and enabling seamless policy updates.

3.2 System Architecture
Figure 1 illustrates the architecture of QLLM. At a high level, a sched-
uler component receives a sequence of prompts over time—each

referred to as a job—and schedules them on the inference engine,
which processes jobs through the layers of the model. The sched-

uler is architected around two primary components: a dispatcher
and a batch engine. The dispatcher enqueues incoming jobs into

prefill queues based on priority and directs model output tokens

into their corresponding decode queues. Simultaneously, the batch

engine groups tokens into batches for each iteration, following Al-

gorithm 1, before dispatching them to the inference engine. Unlike

existing work, the QLLM scheduler enables preemption & scheduling
of jobs at fine granularity. For example, QLLM allows preempting a

batch of best-effort jobs at any processing layer to replace one of

the jobs with a newly arrived latency-sensitive job, then resuming

their execution.

The QLLM scheduler utilizes four separate queues to monitor

unfinished LS and BS jobs. Two of these queues manage jobs that

need to be processed through the prefill stage, while the other two

handle jobs that have progressed to the decode phase. Queues are

implementedwith an FCFS policy. The batch engine in the scheduler

extracts jobs from these queues to implement a pre-configured (or

a user-defined) batch policy. We show the pre-configured policy

in Algorithm 1 where we prioritize the execution of LS jobs by

134



EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Mohammad et al.

D
is

pa
tc

he
r

Decode

Prefill
LS

BE

LS

BE

Batch
Engine

Se
lf-

At
te

nt
io

n

E1

E2

E3

E4

R
ou

te
r

Layer 1

C
he

ck
po

in
t

Control Signal

9

8

3

2

7

1

4

Feedback Signal

Preempt

Update Status5

6

Batch
Engine

Se
lf-

At
te

nt
io

n

E1

E2

E3

E4

R
ou

te
r

Layeri
BE Jobs

LS Jobs Jobs in Transit

Active Jobs

Batch of Jobs

LayerN

(a) Baseline (b) QLLM

Figure 1: Comparison of a baseline and QLLM. The baseline employs iteration-level scheduling and continuous batching, with
control returning to the scheduler only upon execution of all N layers. The figure on the right demonstrates a streamlined
execution of QLLM’s fine-grain scheduling within layer 1. LS jobs arrive after BE jobs and are batched in step 7.

Algorithm 1 Batch Selection Logic

1: function GetNextBatch

2: if LS_DecodeQueue.size() ≥ BatchSize then
3: return GetBatch(LS_DecodeQueue)

4: else if not LS_PrefillQueue.isEmpty() then
5: batch← GetBatch(LS_PrefillQueue)

6: if batch.size() < BatchSize then
7: Fill from BE_PrefillQueue

8: return batch

9: else if not LS_DecodeQueue.isEmpty() then
10: batch← GetBatch(LS_DecodeQueue)

11: if batch.size() < BatchSize then
12: Fill from BE_DecodeQueue

13: return batch

14: else if not BE_DecodeQueue.isEmpty() then
15: return GetBatch(BE_DecodeQueue)

16: else if not BE_PrefillQueue.isEmpty() then
17: return GetBatch(BE_PrefillQueue)

18: return None

preempting BE jobs. Batches are then submitted to the inference

engine.

QLLM allows for user-defined scheduling and context-switch

policies at the granularity of experts, which can be implemented in

fewer than 50 lines of Python code. The inference engine operates

as a closed-loop feedback controller, updating the scheduler on

execution status after each attention and router stage. In response,

the scheduler dynamically signals the engine to adapt the execution

flow based on user-defined policies. While in this paper we define

our policies to minimize TTFT for LS tasks, other systems could

leverage QLLM to define policies for dynamic sequence offloading

or selective expert execution based on user-defined constraints,

showcasing its extensibility.

Example. In Figure 1, four BE jobs must be processed at the decode

stage. Both the baseline (Fig. 1(a)) and QLLM (Fig. 1(b)) batch and

dispatch these jobs to the inference engine. Slightly after, an LS

job arrives. With continuous batching, the baseline approach waits

until all the BE jobs are processed through all the layers. Only then,

it executes the prefill phase of the LS job, and adds it to the batch.

In QLLM, as soon as an LS job arrives, the scheduler stops the

execution of the BE batch at the engine. It then executes the prefill

stage for the LS job, and then the subsequent decode stage. Then,

QLLM dynamically merges the LS jobs with the BE jobs within the

layer execution, reducing the latency of the LS job.

Batch selection logic. Now we explain how Algorithm 1 creates

batches. The goal is to fill a batch with LS jobs without exceeding

the maximum batch size. The algorithm prioritizes filling the batch

first with LS jobs at the decode stage (lines 2-3). If a maximum-sized

batch cannot be created, it prioritizes LS jobs in the prefill stage to

produce more LS jobs in the decode stage (lines 4-5). The algorithm

also attempts to add some BE jobs to fill the batch if possible (lines

6-7). If there are no LS jobs at the prefill stage, the algorithm simply

executes the LS jobs at the decode stage, filling the batch with

BE jobs at the decode stage (lines 10-14). If there are no LS jobs,

it simply executes BE jobs, prioritizing decode over prefill (lines

16-19).

3.3 System Modularity and Extensiblity
Unified sequence and batch abstractions for inference. At
its core, QLLM replaces the fragmented sequence and batch han-

dling found in existing inference systems with a unified execution

model. Rather than managing sequences and their state in an ad

hoc manner, QLLM defines a Sequence abstraction, encapsulating

all relevant metadata, including KV cache tensors, routing infor-

mation, and execution state. A corresponding Batch abstraction

allows collective processing while maintaining individual sequence

integrity. This structured approach streamlines execution, improves

observability, and ensures robust preemption without introducing

unnecessary synchronization overhead.

Breaking rigid batch processing with queues per expert. A
major advancement is the per-expert FIFO queuing, which funda-

mentally transforms the token flow through MoE layers. In contrast

to traditional inference engines that create rigid batch tensors re-

tained across iterations until execution completion, QLLM employs

135



Fine-Grained Preemption and Priority-Aware Scheduling in LLMs EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

distinct and independent data structures-including tensors for each

Sequence object-and offers a unified interface through abstraction,

ensuring compatibility without necessitating destructive modifica-

tions.

This is achieved through the Facade Pattern, where the Batch
abstraction acts as an interface between the model and underly-

ing sequence-level data structures. Instead of handling anonymous

concatenated tensors, QLLM provides a structured representation

where each Sequence object retains its own state while being pro-

cessed within a unified Batch. This allows the model to interact with

monolithic tensors while the underlying system dynamically tracks

and updates individual sequences upon tensor modification. By

intercepting tensor access, QLLM enables fine-grained control over

execution flow, facilitating expert-level preemption and efficient

context switching without modifying core model operations.

Eliminating costly split-merge procedures. Unlike existing

commercial systems where retrieving a token from a batch involves

costly splitting and concatenating of pre-constructed tensors, QLLM

enables direct, real-time state updates of individual sequences, facili-

tating low-overhead preemption by overlapping token state updates

with execution. Additionally, QLLM introduces efficient KV cache

management through a novel module which we call the Unified

Dynamic Cache, which decouples sequence-level and batch-level

cache operations and avoids expensive split-merge procedures on

large KV tensors.

Implications for deferred inference execution. In addition

to preemption, per-expert queuing opens up possibilities for re-

searchers to investigate optimizations in deferred execution, adap-

tive load balancing, dynamic workload distribution, fault tolerance,

multi-tenant environments, and beyond. While QLLM is centered

on low-latency inference for mixed-priority workloads, its foun-

dational architectures are applicable to future systems demanding

enhanced flexibility in MoE inference. Nevertheless, the concepts

of per-expert queuing and low-overhead state management are not

confined to MoE models and may be applied to dense models.

4 Evaluation
This section offers an initial evaluation of QLLM’s performance

utilizing practical hardware configurations, with an emphasis on

its impact on the latency of LS requests and the overall turnaround

time. We address the following questions:

• Q1: How does QLLM comply with the Latency SLO?

• Q2: How does QLLM affect throughput?

• Q3: How does QLLM affect the turnaround time for BE and LS

requests?

Experimental Setup. The evaluation was conducted on a bare-

metal system equipped with an Nvidia A100 GPU (80 GB memory),

dual-socket Intel Xeon Gold 6336Y CPUs, 256 GB DRAM, and PCIe

4.0 interconnect.

Models andDataset.WeuseMixtral 8×7B, a representative ofMoE

models. The model is executed with 4-bit quantization and FP16

precision. In this configuration, the model required approximately

22.93 GB of GPU memory. Experiments are conducted using the

ShareGPT dataset [24].

Baseline System. To evaluate the performance of QLLM, we com-

pare it against the HF TGI inference engine, which represents a

1 2 3 4 5 6 7 8
Request Arrival Rate

10 1

100

101

102

TT
FT

 (s
ec

on
ds

, l
og

 sc
al

e)

HF
QLLM
SLO = 3 sec
SLO Compliance Region
QLLM SLO Limit: 7 RPS

Figure 2: QLLM reduces TTFT for LS jobs by up to 101.6×while
ensuring compliance with the SLO. In contrast, Hugging Face
fails to meet the SLO even under low load due to priority-
oblivious scheduling.

widely used production engine in serving LLMmodels. Importantly,

QLLM is built on top of the HF engine, ensuring that any perfor-

mance gains can be attributed to the scheduling mechanism rather

than unrelated system differences. We set the maximum batch size

to 32.

Workload. The workload generator retrieves prompts from the

ShareGPT dataset and marks 20% of these prompts as LS prompts

based on a random selection process. Subsequently, requests are

dispatched to QLLM in accordance with Poisson arrival rates. It

is important to know that QLLM performance may vary under

different workload patterns, including the portion of LS requests

and their distribution. However, in this preliminary evaluation of

our prototype system, we explore the workload described earlier.

Evaluation Metrics. For users, the latency of LS requests sig-

nificantly influences the responsiveness of applications like code

completion and medical LLM applications. Therefore, we evaluate

and present both TTFT and the turnaround time for LS jobs. Turn-

around time refers to the complete delay from the moment a request

is received by the system until the response is fully generated and

delivered to the user. Furthermore, we measure the job completion
rate as a throughput metric. Additionally, we investigate the impact

of QLLM on the BE turnaround time.

Q1: QLLM significantly decreases TTFT latency. Figure 2 com-

pares the TTFT of the HF TGI baseline (red line) with QLLM (blue

line). We set the SLO to 3 seconds (green dashed line), which is

10× the processing iteration time of a single decode [21, 32]. The

results show that the priority-oblivious scheduler of HF TGI cannot

comply with the SLO even at low request rates. In fact, HF TGI

employs a run-to-completion strategy in which lengthy BE jobs

postpone the execution of LS jobs. In contrast, QLLM handles up

to 7 jobs/s while still adhering to the SLO latency for LS requests.

Notably, QLLM reduces TTFT by up to 101.6× and an average of

65.2× while complying with the SLO.

Q2: QLLM preserves overall throughput. Figure 3 depicts the
variation in throughput as a function of the request arrival rates,

136



EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Mohammad et al.

2 4 6
Request Arrival Rate

0.5

1.0

1.5

2.0

Jo
bs

 C
om

pl
et

ed
 (j

ob
s/

se
c)

HF
QLLM

Figure 3: QLLM maintains a comparable or slightly higher
job completion rate compared to HF.

2 4 6
Request Arrival Rate

0

100

200

300

Tu
rn

ar
ou

nd
 T

im
e 

(s
)

HF
QLLM

(a) BE Requests

2 4 6
Request Arrival Rate

0

100

200

300 HF
QLLM

(b) LS Requests

Figure 4: Comparison of turnaround times for Best Effort
and Latency-Sensitive requests.

quantified by the job completionmetric. QLLMdemonstrates through-

put that is comparable to, or slightly exceeds, the baseline while

adhering to the latency SLO for LS requests. Its ability to execute

fine-grained preemption enables QLLM to promptly address in-

coming LS requests while simultaneously managing best-effort

decoding jobs, thereby increasing GPU efficiency. The throughput

measured in tokens per second exhibits a similar trend.

Q3: QLLM reduces turnaround time for LS jobs. Figure 4 com-

pares the turnaround time of HF TGI (blue line) and QLLM (red

line) for BE and LS jobs. For LS jobs, QLLM reduces up to 12.8×
the turnaround time relative to the baseline thanks to its preemp-

tion and low-latency response to LS requests. QLLM experiences a

1.38× increase in response time for BE requests, reaching a peak of

2.04×. The findings suggest that the QLLM advantages for LS jobs

considerably surpass the detriments to BE requests.

5 Related Work
Existing approaches to LLM inference scheduling primarily opti-

mize at the iteration level, lacking finer-grained control. ORCA

[10] and FastServe [32] optimize scheduling at the iteration level,

primarily benefiting dense models but lacking finer-grained control.

Although FastServe introduces token-level preemption, it does not

incorporate priority-aware execution. Additionally, Reef [9] focuses

on microsecond-scale preemption for traditional DNN model serv-

ing, where each request involves a single inference pass through

the model. In contrast, LLM inference operates autoregressively,

requiring multiple iterations.

Llumnix [28] and FastSwitch [26] enhance scheduling by manag-

ing KV cache migration and preemptive context switching, respec-

tively, but still operate within iteration-level scheduling. Unlike

these approaches, our work achieves more fine-grained control,

enabling efficient priority management and dynamic execution

without excessive recomputation overhead.

In contrast, QLLM enables expert-level preemption and priority-

aware scheduling, addressing head-of-line blocking and priority

inversion. This fine-grained control ensures low latency for LS tasks

while maintaining high throughput, surpassing prior iteration-level

approaches.

6 Discussion
Limitations. While the existing QLLM prototype demonstrates

promising results, we are actively exploring methods to reduce

memory overhead and mitigate potential starvation in certain

workloads. Compared to iteration-level preemption, our approach

requires caching additional states (e.g., routing_weights and hid-
den_states), though the primary memory constraint remains the

KV cache. Efficient memory management to further enhancing the

effectiveness of preemptive scheduling could be a subject for future

work.

Overlapping preemption with execution. The new MoE layer

introduces execution flexibility, allowing the system to process

entire batches, selectively execute specific tokens or experts, or

dynamically preempt ongoing tasks. This adaptability enables op-

portunities for overlapping memory operations with concurrent

task execution, which can improve overall performance. Exploring

these optimizations can further enhance system efficiency.

Applicability to dense models. Our approach extends beyond

MoE models and is applicable to all LLM architectures. In dense

models, preemptive scheduling at the layer level is more straightfor-

ward due to their deterministic execution, where all tokens follow

the same computational path. However, MoE models introduce

dynamic token-to-expert routing, necessitating more sophisticated

state management and preemption mechanisms. By addressing

these complexities, QLLM provides a generalized scheduling frame-

work that supports both MoE and dense models.

QLLM’s architectural flexibility introduces new opportunities

for optimizing LLM inference, enabling more efficient scheduling

and execution strategies. This design opens pathways for further

exploration in adaptive workload management, memory-efficient

preemption, and broader applications beyond MoE models. By re-

defining how inference tasks are scheduled and executed, QLLM

lays the groundwork for future advancements in efficient and scal-

able LLM serving.

7 Conclusion
This paper introduces QLLM, the first inference system that fa-

cilitates fine-grained preemption and priority-aware scheduling

for MoE models, optimizing latency-sensitive jobs while preserv-

ing high throughput. By implementing per-expert queues and a

priority-aware scheduler, QLLM addresses HOL blocking and pri-

ority inversion, achieving a reduction in LS jobs TTFT latency by

137



Fine-Grained Preemption and Priority-Aware Scheduling in LLMs EuroMLSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

up to 101.6× and ensuring SLO compliance up to 7 requests/sec,

whereas the baseline never adheres to SLO in tested scenarios. The

proposed approach is modular and extensible, allowing seamless

integration with existing MoE frameworks. Future research will

focus on further optimizing memory consumption, potential star-

vation, and open-source QLLM to drive continued innovation in

efficient LLM inference.

Acknowledgments
We would like to thank the anonymous reviewers for their insight-

ful comments and suggestions on this paper. This work has been

partially supported by Vinnova (the Sweden’s Innovation Agency),

the Swedish Research Council (agreement No. 2021-04212), KTH

Digital Futures, and Knut and Alice Wallenberg Foundation (Wal-

lenberg Scholar Grant for Prof. Dejan Kostić).

References
[1] Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel,

Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,

and Quoc V Le. 2020. Towards a Human-like Open-Domain Chatbot. arXiv
preprint arXiv:2001.09977 (2020). https://arxiv.org/abs/2001.09977

[2] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwa-

tra, Bhargav S. Gulavani, Alexey Tumanov, and Ramachandran Ramjee. 2024.

Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve. In

18th USENIX Symposium on Operating Systems Design and Implementation (OSDI
2024). Santa Clara, CA, 117–134. https://www.usenix.org/conference/osdi24/

presentation/agrawal

[3] Vincent-Pierre Berges, Barlas Oğuz, Daniel Haziza, Wen-tau Yih, Luke Zettle-

moyer, and Gargi Ghosh. 2024. Memory Layers at Scale. arXiv preprint
arXiv:2412.09764 (2024). https://arxiv.org/abs/2412.09764 Accessed: 2025-02-11.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de

Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg

Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,

Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail

Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,

Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-

tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex

Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,

Shantanu Jain, William Saunders, Christopher Hesse, Andrew N Carr, Jan Leike,

Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,

Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario

Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluat-

ing Large Language Models Trained on Code. arXiv preprint arXiv:2107.03374
(2021). https://arxiv.org/abs/2107.03374

[5] Zhiyuan Dai et al. 2024. DeepSeek-MoE: Towards Ultimate Expert Specialization

in Mixture-of-Experts Language Models. arXiv preprint arXiv:2406.00023 (2024).
[6] DeepSeek-AI et al. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in

LLMs via Reinforcement Learning. (2025). The DeepSeek-R1 model contains 671

billion parameters..

[7] Hugging Face. 2023. Text Generation Inference. https://github.com/huggingface/

text-generation-inference. Accessed: 2025-02-06.

[8] Martin Iglesias Goyanes. 2024. LLM Inference at Scale with TGI. Hugging
Face (2024). https://huggingface.co/blog/martinigoyanes/llm-inference-at-scale-

with-tgi

[9] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022. Microsecond-

scale Preemption for Concurrent GPU-accelerated DNN Inferences. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
22). USENIX Association, Carlsbad, CA, 539–558. https://www.usenix.org/

conference/osdi22/presentation/han

[10] Minsoo Jeon et al. 2023. ORCA: A Fine-Grained Execution Model for Large

Language Model Inference. arXiv preprint arXiv:2301.10292 (2023). https://arxiv.

org/abs/2301.10292

[11] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche

Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma

Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume

Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre

Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao,

Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William

El Sayed. 2024. Mixtral of Experts. arXiv preprint arXiv:2401.04088 (2024).

https://arxiv.org/abs/2401.04088

[12] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maz-

ières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for

microsecond-scale Tail Latency. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 345–360.

https://www.usenix.org/conference/nsdi19/presentation/kaffes

[13] Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Michał

Krutul, Szymon Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź,

Piotr Sankowski, Marek Cygan, and Sebastian Jaszczur. 2024. Scaling Laws

for Fine-Grained Mixture of Experts. arXiv preprint arXiv:2402.07871 (2024).

https://arxiv.org/abs/2402.07871

[14] Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. 2024. {InfiniGen}:
Efficient generative inference of large language models with dynamic {KV}
cache management. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24). 155–172.

[15] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng

Zhang, Kuntai Du, Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, Michael

Maire, Henry Hoffmann, Ari Holtzman, and Junchen Jiang. 2024. CacheGen:

KV Cache Compression and Streaming for Fast Large Language Model Serving.

In Proceedings of the ACM SIGCOMM 2024 Conference (Sydney, NSW, Australia)

(ACM SIGCOMM ’24). Association for Computing Machinery, New York, NY,

USA, 38–56. doi:10.1145/3651890.3672274

[16] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çağlar Gülçehre, and Bing

Xiang. 2016. Abstractive Text Summarization using Sequence-to-sequence RNNs

and Beyond. In Proceedings of the 20th SIGNLL Conference on Computational
Natural Language Learning. 280–290. https://aclanthology.org/K16-1028/

[17] NVIDIA. 2023. FasterTransformer: A Fast Inference Toolkit for Transformer

Based Models. https://github.com/NVIDIA/FasterTransformer.

[18] NVIDIA Corporation. 2023. NVIDIA Grace Hopper Superchip Architecture

In-Depth. https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-

architecture-in-depth/ Accessed: 2025-01-14.

[19] NVIDIA Corporation. 2023. NVLink & NVSwitch: Fastest HPC Data Center

Platform. https://www.nvidia.com/en-us/data-center/nvlink/ Accessed: 2025-

01-14.

[20] Romain Paulus, Caiming Xiong, and Richard Socher. 2018. A Deep Reinforced

Model for Abstractive Summarization. In Proceedings of the 6th International
Conference on Learning Representations. https://arxiv.org/abs/1705.04304

[21] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving

Low Tail Latency for Microsecond-scale Networked Tasks. In Proceedings of the
26th Symposium on Operating Systems Principles. ACM, 325–341. doi:10.1145/

3132747.3132780

[22] Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan

Liu, Jing Xu, Myle Ott, Eric Michael Smith, Y-Lan Boureau, and Jason Weston.

2021. Recipes for Building an Open-Domain Chatbot. In Proceedings of the
16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume. 300–325. https://aclanthology.org/2021.eacl-main.24

[23] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get To The Point:

Summarization with Pointer-Generator Networks. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 1073–1083. https://aclanthology.org/P17-1099/

[24] ShareGPT Team. 2023. ShareGPT. https://sharegpt.com/. Accessed: 2025-01-19.

[25] Noam Shazeer et al. 2017. Outrageously Large Neural Networks: The Sparsely-

Gated Mixture-of-Experts Layer. arXiv preprint arXiv:1701.06538 (2017).
[26] Ao Shen, Zhiyao Li, and Mingyu Gao. 2024. FastSwitch: Optimizing Context

Switching Efficiency in Fairness-aware Large Language Model Serving. arXiv
preprint arXiv:2411.18424 (2024). https://arxiv.org/abs/2411.18424

[27] Diyi Shi, Hao Zheng, Hongyu Ren Zhang, et al. 2023. vLLM: A High-Throughput

and Memory-Efficient Inference Engine for Large Language Models. arXiv
preprint arXiv:2305.11342 (2023). https://arxiv.org/abs/2305.11342

[28] Biao Sun, Ziming Huang, Hanyu Zhao, Wencong Xiao, Xinyi Zhang, Yong Li, and

Wei Lin. 2024. Llumnix: Dynamic Scheduling for Large Language Model Serving.

In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’24). https://www.usenix.org/conference/osdi24/presentation/sun-biao

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All

You Need. In Advances in Neural Information Processing Systems. 5998–6008.
[30] vLLM Project. 2024. vLLM’s V1 Engine Architecture. https://github.com/vllm-

project/vllm/issues/8779. Accessed: 2025-02-09.

[31] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu, and Xin

Jin. 2023. Fast Distributed Inference Serving for Large Language Models. arXiv
preprint arXiv:2305.05920 (2023).

[32] Bingyang Wu, Yinmin Zhong, Zili Zhang, Shengyu Liu, Fangyue Liu, Yuanhang

Sun, Gang Huang, Xuanzhe Liu, and Xin Jin. 2023. FastServe: Fast Distributed

Inference Serving for Large Language Models. arXiv preprint arXiv:2305.05920
(2023). https://arxiv.org/abs/2305.05920

[33] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin

Jin, and Hao Zhang. 2024. DistServe: Disaggregating Prefill and Decoding for

Goodput-optimized Large Language Model Serving. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24). 193–210. https:

//www.usenix.org/conference/osdi24/presentation/zhong-yinmin

138

https://arxiv.org/abs/2001.09977
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://arxiv.org/abs/2412.09764
https://arxiv.org/abs/2107.03374
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://huggingface.co/blog/martinigoyanes/llm-inference-at-scale-with-tgi
https://huggingface.co/blog/martinigoyanes/llm-inference-at-scale-with-tgi
https://www.usenix.org/conference/osdi22/presentation/han
https://www.usenix.org/conference/osdi22/presentation/han
https://arxiv.org/abs/2301.10292
https://arxiv.org/abs/2301.10292
https://arxiv.org/abs/2401.04088
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://arxiv.org/abs/2402.07871
https://doi.org/10.1145/3651890.3672274
https://aclanthology.org/K16-1028/
https://github.com/NVIDIA/FasterTransformer
https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/
https://www.nvidia.com/en-us/data-center/nvlink/
https://arxiv.org/abs/1705.04304
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://aclanthology.org/2021.eacl-main.24
https://aclanthology.org/P17-1099/
https://sharegpt.com/
https://arxiv.org/abs/2411.18424
https://arxiv.org/abs/2305.11342
https://www.usenix.org/conference/osdi24/presentation/sun-biao
https://github.com/vllm-project/vllm/issues/8779
https://github.com/vllm-project/vllm/issues/8779
https://arxiv.org/abs/2305.05920
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Mixture of Experts Models
	2.2 Prefill and Decode Phases
	2.3 Challenges in Existing Inference Systems
	2.4 Limitations of Preemption in Current Systems

	3 QLLM Design Overview
	3.1 Challenges and Design Decisions
	3.2 System Architecture
	3.3 System Modularity and Extensiblity

	4 Evaluation
	5 Related Work
	6 Discussion
	7 Conclusion
	References

