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Abstract

Stateful network functions are increasingly used in data
centers. However, their scalability remains a significant
challenge since parallelizing packet processing across
multiple cores requires careful configuration to avoid
compromising the application’s semantics or performance.
This challenge is particularly important when deploying
multiple stateful functions on multi-core servers. This
paper proposes FLOWMAGE, a system that leverages Large
Language Models (LLMs) to perform code analysis and
extract essential information from stateful network functions
(NFs) prior to their deployment on a server. FLOWMAGE uses
this data to find an efficient configuration of an NF chain
that maximizes performance while preserving the semantics
of the NF chain. Our evaluation shows that, utilizing GPT-4,
FLOWMAGE is able to find and apply optimized configuration
when deploying stateful NFs chain on a server, resulting
in significant performance improvement (up to 11X) in
comparison to the default configuration of the system.
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1 Introduction

Recent advances in networking devices, including the
emergence of multi-hundred Gbps NICs [31] and powerful
programmable switches [21], have boosted the network
links capacity. Concurrently, state-of-the-art systems suggest
storing packet data in locations outside of the CPU, such
as programmable switches [14] and RDMA servers [37];
hence, transmitting only packet headers to software Network
Functions (NFs) for processing. Consequently, NFs now
face unprecedented packet rates (> 10% packets per second
(pps)), necessitating highly optimized systems to support
this workload effectively [10]. Utilizing Receive-Side Scaling
(RSS) [19] to dispatch traffic among multiple cores on a
server is the typical approach to scale software NFs. However,
this approach introduces multiple challenges, particularly
when the NF is stateful and must maintain state per flow. To
process a packet, stateful NFs are required to retrieve the
stored state from memory, which becomes costly when the
needed information is not present in the higher levels of CPU
caches or when multiple CPU cores access it simultaneously.
To address this challenge, state-of-the-art systems propose
solutions to reduce the processing cost by (i) using advanced
data structures to minimize the average number of memory
accesses per packet [4, 13], (ii) eliminating the inter-core
transfer of data by sending all packets of a flow to the same
core [34], and (iii) reducing the state sharing overhead
using transactional memory [43]. However, these existing
solutions do not scale when deploying a chain of stateful NFs
on a server, as finding system bottlenecks requires a detailed
understanding of the semantics and software structure
of deployed NFs, which is not feasible with traditional
approaches.

The performance of Large Language Models (LLMs)
shown in various areas [16, 27] has resulted in many
proposals to use LLMs for generating code [15], assisting
programmers [35], and optimizing compilers [8]. Motivated
by this trend, we investigated applying LLMs to solve the
problem of configuring complex NF chains by analyzing
software implementations of NFs and extracting information
about the software’s behavior, semantics, and system-level
performance. The extracted information is used to optimize
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the software’s infrastructure, deployment configuration, and

execution pipeline. Relying on LLMs enables us to have a

framework-agnostic code analyzer, which is easier to adopt

than a domain-specific parser. We introduce FLowWMAGE
that utilizes an LLM (i.e., GPT [32], Code Llama [36], and

Gemini [39]) to efficiently deploy a chain of stateful NFs

on a commodity server and improve performance. More

specifically, FLowMAGE (i) analyzes the source code of NFs,

(ii) extracts meta-information about the implementation

of each NF, and (iii) automatically calculates & applies an

optimized configuration just before deploying the chain.

We demonstrate that the meta-information provided by the

LLM allows FLowMAGE to effectively reduce the overheads

associated with concurrent memory space accesses, thereby

improving the chain’s throughput.

Contributions. To the best of our knowledge, we are

the first to (i) show the benefits of employing LLMs

in the context of packet processing and (ii) address the
challenges of deploying stateful NF chains with multiple
flow granularities. In a nutshell, we:

e Evaluated LLMs ability to extract information about the
logical behavior of code, its semantics, and the utilized
data structures;

e Developed FLOWMAGE to automatically find and apply the
optimal configuration via LLMs before deploying a chain
of stateful NFs;

e Evaluated FLowMAGE and showed the benefits of
optimally deploying stateful NFs on multi-core servers.

2 Motivation

Linear scaling of stateful NFs is a key challenge when
deploying networking applications on commodity servers.
The overhead of fetching state information from memory
is a well-known barrier at high packet processing rates.
Therefore, minimizing memory accesses and maintaining
state information in higher levels of CPU caches is essential
to reduce this overhead [11, 13].

To scale up stateful NFs, one parallelizes the NF by creating
an instance per core and relies on the NIC to evenly distribute
traffic among available CPU cores.” However, dispatching
packets of the same flow to different cores necessitates
a synchronization mechanism among these instances to
coordinate parallel accesses to shared data structures, leading
to significant overhead due to the long memory access time.
To eliminate the overhead of synchronization and sharing of
data structures, state-of-the-art solutions rely on a hashing
function (e.g., Toeplitz) to dispatch all packets of a flow to the
same core, enabling a so-called shared-nothing architecture.
Figure 1 illustrates the difference between shared and shared-
nothing architectures when different CPU cores access
the memory. NICs typically” use RSS [19] mechanism to

“We focus on the run-to-completion model [23].
TWe do not consider rule-based flow steering mechanisms [18].
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Figure 1. Different models for parallelizing stateful network
functions where per-flow state data is either (a) shared
among cores or (b) private per core.

distribute traffic among cores. For each packet, RSS calculates
the hash of a set of packet header fields and forwards
the packet toward a CPU core based on the hash value
(typically, using the hash as an index to a table that contains
the assigned CPU cores). However, achieving a shared-
nothing architecture is challenging as it requires a careful
configuration of RSS to be aligned with the flow definition of
the deployed stateful NFs [34]. For instance, a Flow Statistics
Counter (FSC) [1] keeps statistical information per TCP/UDP
connection, requiring RSS to dispatch packets based on
the 5-tuple of packets attributes (i.e., source IP, destination
IP, source port, destination port, and protocol) to ensure a
shared-nothing architecture. However, a Port Scan Detector
(PSD) maintains states by source IP to identify potential port
scanning activities, thus requiring packet distribution solely
based on the source IP.

Manually configuring RSS significantly increases the error
rate since (i) the operator needs to have a comprehensive
understanding of the NF behavior and its requirements,
and (ii) finding the correct RSS configuration is not
always trivial [34]. To address this issue, a few works
have proposed frameworks for automatically configuring
RSS. Maestro [34] proposes a system that automatically
analyzes an NF and generates a new implementation
that distributes the workload across multiple cores with
respect to the NF’s semantics. NFOS [43] proposes a
programming framework that helps NF-domain experts
to develop and optimize scalable NFs without worrying
about concurrency complexities and exploits memory
transactions [28] to process packets instead of the common
lock-based synchronization.

2.1 What are the Current Problems?

Existing solutions to automatically configure RSS are not
widely adopted due to several limitations in analyzing the
code or complexities of applying them to different packet
processing frameworks, as described below:
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Requiring exhaustive symbolic execution. To configure
RSS, proposed systems typically run an exhaustive symbolic
execution to detect all possible execution paths and extract
the behavior and semantics of stateful NFs [33, 34]. This
introduces all of the inherent limitations of symbolic
execution, such as statically bounding loops while incurring
the large overhead of re-running the symbolic execution
when adding/modifying NFs.

Relying on code annotations. Existing systems
often necessitate developers to adhere to specific coding
conventions [34] and supply annotations [43] for accurate
code analysis. This prerequisite poses a notable challenge for
integrating these systems into established frameworks due to
restrictions on data structure usage, the need for substantial
modifications to existing frameworks, and the obligation for
developers to comply with specified coding standards.
Supporting a single NF deployement. One of the key
aspects of using software-based NFs is the ability to deploy
a chain of NFs on a commodity server. However, existing
systems mainly focus on single NF deployment; they do
not provide a solution to automatically configure RSS when
deploying a chain of stateful NFs. Finding the optimal RSS
configuration for a NF chain is challenging, as different NFs
in the chain may operate based on different flow definitions.
Additionally, in some cases where the flow definition of NFs
are mutually exclusive, achieving a shared-nothing model
is theoretically impossible. For instance, linking a PSD and a
Policer, which respectively track state information based on
source and destination IP addresses, necessitates some level
of state sharing among cores as it is not feasible to ensure a
shared-nothing model for both NFs at the same time.

2.2 Machine Learning for Networking Systems

The integration of Machine Learning (ML) models into
networking systems represents a significant shift towards
more intelligent and efficient network infrastructures [5].
Following that, many systems use ML to improve different
aspects of networking, such as traffic prediction [45],
routing [26], congestion control [44], security [25], and
network management & configuration [29, 30, 38, 41].
Additionally, the recent promising performance of LLMs
opens new possibilities to further utilize ML-based
networking systems. More specifically, most LLMs are built
on deep learning architectures [40] with massive datasets
containing text, books, and GitHub repositories, which helps
them understand programming languages. Therefore, LLMs
are well-suited to generate, refine, or analyze code, as shown
in several studies [7, 42].

As a result, several research efforts explore the possibility
of employing LLMs for static code analysis [9]. For instance,
ChatGPT can understand programming languages [6] and
create function summaries with more accuracy than static
analysis methods, especially with loops and variable-length
data structures [24].
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How can LLMs help to efficiently deploy stateful NF
chains? The notable abilities of LLMs in code analysis
provide an opportunity to address the limitations of state-of-
the-art solutions. As opposed to Maestro [34] and NFOS [43],
LLMs enables us to propose a framework-agnostic solution
to analyze the behavior, semantics, and performance of
NFs without requiring exhaustive symbolic execution or
code annotations. Therefore, in this paper, we explore
the potential of using LLMs to extract meta-information
about NFs found in packet processing frameworks. The
modular architecture of these frameworks often allows for
the automatic extraction of code associated with each NF,
which is usually concise enough to be directly utilized in LLM
prompts for analysis. The next section proposes our LLM-
based system, FLowMAGE, which automatically extracts
this meta-information and utilizes them to deploy chains
of stateful NFs in an optimized way.

3 FrowMagGe: Optimized NF Chaining

This section proposes leveraging the promising performance
of LLMs to efficiently deploy a chain of stateful NFs on
commodity servers. Our solution maximizes performance of
the chain while requiring only small changes to the existing
well-known frameworks.

FLOWMAGE relies on LLMs to analyze the source code
of NFs, where the LLM (i) provides meta-information
about each network function and (ii) compares NFs code
complexity in terms of the average processing required
per packet. To deploy a chain of stateful NFs, FLowMAGE
undertakes a three-step approach (shown in Figure 2). First,
a feature tracker keeps the list of all existing NFs and
ensures that the extracted meta-information per NF is always
available and updated with the latest changes in the NFs code.
Second, it accepts a raw configuration file as input, i.e., the
standard method for defining chains and configurations of
NFs in most existing frameworks. End users do not need
to be concerned about the parallelization configuration in
the provided file. FLowMAGE employs a solver to leverage
the extracted data from the LLM to identify an optimal RSS
configuration, enhancing the chain’s performance. Finally,
FLOWMAGE generates a configuration file that encapsulates
all vital settings for parallelizing the given NFs and the
determined RSS configuration. Each step and the system’s
essential requirements are explained in the subsequent
sections.

3.1 Prompt Formulation

FLowMAGE harnesses LLMs through a two-step process. In
the initial phase (i.e., meta-data extraction), FLOWMAGE is
designed to monitor modifications and additions of NFs
within the source code. Upon detecting changes to an
existing NF’s code or the introduction of a new NF, it
automatically extracts features of the NF immediately after
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Figure 2. Deployment stages in FLOWMAGE. FLOWMAGE
receives a configuration file from the user, utilizes the
extracted meta-information per NF, and adds all necessary
configurations to optimize the proposed chain.

the source code compilation. This process ensures an up-to-
date repository of NF characteristics and stores the extracted
data in a special file. The data extracted at this step pertain
to the semantics and behavior of the NF, which are crucial
for identifying the most effective configuration setup. The
features extracted during this step include the following:
Statefulness indicates whether an NF stores state
information per flow. If an NF is identified as stateless,
FLowMAGE does not consider further parameters since
parallelization does not present a scalability challenge.
Flow Definition (F) identifies the flow definition used by
the NF. Currently, FLOWMAGE accommodates a subset of
the 5-tuple attributes of packets for flow definition, which
encompasses the majority of stateful NFs. Future versions of
FLowMAGE may expand this capability to cover all potential
flow definitions (e.g., a bridge that associates MAC addresses
with network interfaces).

Read-Write Intensity (I) identifies the frequency at which
states are updated. It plays a critical role in configuring
the chain since the adverse effects of state sharing are
considerably lower in read-intensive applications than in
write-intensive ones, owing to the parallelization overhead,
such as locks and inter-core data transfer.

Pointer Chasing (P) indicates the presence of one or
more pointers within the state data structure. Pointers lead
to irregular memory accesses during packet processing,
which can increase system overhead and cause notable
performance degradation, especially when states are shared
among multiple cores.

To accurately extract the specified information from an
NF, FLowMAGE sends a comprehensive prompt containing
(i) a general introduction outlining the expected information
from the LLM (Tg), (ii) a section detailing the specific
information, listing the required features and the definition
of each feature (T¢), (iii) a brief directive specifying the
desired response format (Tr), which varies for each feature,
and (iv) the relevant source code segments associated with
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— System

Your task is to analyze C or C++ code of a network function provided
by the user. For each network function, the user will ask: 1- if the NF
is stateful... 2- how often the states are being updated... 3- the flow
key of the NF... 4- if the state is stored in irregular memory...

J

User

Here is the C or C++ code of the network function to analyze:

class FlowIPNAT:public FlowStateElement<FlowIPNAT,NATEntryIN>, TCPHelper {
public:
const char *class_name() const override { return "FlowIPNAT"; }
const char *port_count() const override { return "1/1"; }
const char *processing() const override { return PUSH; }

Provide a JSON containing:

1. a key “statefulness” ... 2. a key “intensity” ...

3. a key “flow-key” ... 4. a key “irregular” ...
\ & y y Y g J
Al
N
"result": {
"statefulness": "stateful",
"intensity": "per-packet"”,
"key": ["src_ip","dst_ip","src_port","dst_port","protocol"],
“irregular”: "false"
\J J

Figure 3. FLOWMAGE automatically crafts a prompt and
sends it to an LLM to examine an NF’s code and extract
features.

the NF, automatically retrieved from the framework’s source
code by FLowMAGE (Ts). The final prompt, designed to
optimize the accuracy and relevance of the LLM’s outputs,
is a concatenation of these components (Tg||Tc||T¢|Ts).
Figure 3 demonstrates a summarized sample of a prompt
to examine a stateful NF. In this figure, the top box (ie.,
System) contains a message to set the general objectives
that the LLM should follow, including T and T¢, while the
middle box (i.e., User) includes the examining NF’s source
code (Ts) as well as the desired response format (Tp).

In the subsequent phase (i.e., Code Complexity Evaluation
(CCE)), upon receiving a configuration file indicating
parameters and chains of NFs, FLOWMAGE employs the LLM
to assess and compare the complexity and frequency of
state accesses per packet among the stateful NFs. To do
s0o, FLOWMAGE crafts a prompt" and appends it with the
source codes corresponding to pairs of NFs, which is then
sent to the LLM to determine which NF requires a higher
average processing per packet. This procedure is applied to
all possible pairs of NFs within the chain to deduce the most
optimal configuration. Section 3.2 explains the methodology
and mechanisms by which the solver utilizes this information
to configure the system.

3.2 Solver

Given the meta-information extracted from each NF,
FLowMAGE transforms an input configuration file into

“We show a sample CCE prompt in Appendix A.
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its optimized counterpart. This enhanced configuration
file addresses all necessary setups to reduce the overhead
associated with concurrent access. It contains information
about the optimized RSS configuration, NFs that can ensure a
shared-nothing model, and NFs with the shared states among
CPU cores. To find the optimized configuration, FLOWMAGE
conducts an automatic extraction of the list of existing
stateful NFs within a chain. Leveraging the stored meta-
information for each NF, an optimization problem aimed at
minimizing the packet processing cost across the chain can
be formulated as follows:
N
minimize Z cost(l;, F;, P;,r) subjectto r CR
’ i=1

where R represents the set of all packet attributes that the
NIC supports as RSS parameters (e.g., the 5-tuple attributes
of packets in the current implementation), N denotes the
number of stateful NFs in the chain, and the cost function
returns the overhead value of an NF with a given set of
features (i.e., I;, F;, P;) and a given set of RSS parameters. In
scenarios where the solver identifies multiple configurations
yielding equivalent cost outcomes, it resorts to a CCE step
that utilizes the LLM to compare the code complexity of NFs
in terms of the average processing required per packet. The
decision criterion in such cases favors the configuration
that assigns the more complex NF to operate under a
shared-nothing model. This approach ensures that NFs with
intricate processing demands benefit from an architecture
that minimizes contention and maximizes performance.
However, the CCE step is not mandatory and might be
disabled if including the source codes of both NFs in a single
prompt risks exceeding the LLM’s token limits. In such
scenarios, FLOWMAGE treats all NFs as having equivalent
processing complexity per packet.

The current version of FLowMAGE employs a rudimentary
cost function that ranks features according to their
performance impact, configuring the RSS to ensure that NFs
receiving the highest scores are allocated to a shared-nothing
architecture. Future versions of FLowMAGE will introduce
a more advanced cost function designed to accommodate
a broader spectrum of scenarios and further refine the
optimization of packet processing chains.

3.3 Implementation

As previously highlighted, one of the significant advantages
of FLOWMAGE is its generality and the minimal modifications
required for integration with existing packet processing
frameworks. A crucial criteria for a networking framework to
be compatible with FLowMAGE is (1) the ability to configure
RSS via the input configuration file and (2) support the
operation of each stateful NF in both shared and shared-
nothing models.

To validate the feasibility and effectiveness of FLOWMAGE,
we implemented it as a proof of concept on top of
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FastClick [3], a state-of-the-art packet processing framework.
To meet the first criterion, FLOWMAGE is designed to accept
RSS parameters directly from the configuration file, ensuring
that RSS is configured during the system’s initialization
phase. Addressing the second criterion—facilitating stateful
NFs to function in both shared and shared-nothing
environments—FLOWMAGE introduces a base class from
which all stateful elements are inherited. This class is
designed to read the sharing state of an NF from the
configuration file, employing a locking mechanism to
regulate concurrent accesses in instances where NFs share
state among multiple cores, thus guaranteeing thread safety
and maintaining operational integrity.”

FastClick implements a hierarchical, object-oriented
architecture for stateful NFs, complicating the process of
source code tracking due to the necessity of detecting
and monitoring changes across the hierarchy. To simplify
the integration of FLOWMAGE across various architectures,
we introduce a customizable function that allows for
modifications to tailor the code extraction process to fit the
structure of the targeted networking framework. Integrating
FLOowWMAGE into other packet processing frameworks re-
quires modifying this function to align with the framework’s
structural conventions. Additionally, FLowMAGE contains
framework-agnostic Python scripts to implement feature
tracker and solver components. The solver component
currently relies on a simple rank-based algorithm to
find the optimal configuration; however, switching to
a more complicated cost function may require using
constraint-based solvers. The source code is available
at © hamidgh09/FlowMage.

4 Evaluation

This section evaluates FLowMAGE and demonstrates that
LLMs can accurately analyze the behavior of NFs as well
as provide some relevant data about the complexity of NFs.
Furthermore, we assess the impact of leveraging extracted
information on the performance of NF chains with diverse
properties.

Experimental Setup To assess the performance of
FLowMAGE, we conducted experiments in a testbed
containing two commodity servers interconnected via a 32
X 100-Gbps Edgecore Networks DCS800 Wedge 100BF-32X
switch, powered by an Intel® Tofino™ASIC [20]. One server
acts as the traffic generator and the other as our Device
Under Test (DUT), which runs various chains of stateful NFs.
The DUT is equipped with NVIDIA ConnectX®-6 NICs [31]
and Intel® Xeon® Gold 6346 CPUs @ 3.10 GHz, featuring
32-KiB per-core L1 instruction, 48-KiB data, and 1.3-MiB
per-core L2 caches, alongside a 36-MiB shared Last Level
Cache (LLC) with 12 cache ways. To simulate high traffic
load on the DUT, the Tofino switch clones incoming packets

*Appendix B illustrates a sample FastClick configuration file.
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with varying source IP addresses. To ensure the experiments
reflect realistic conditions, we employ CAIDA trace files to
represent sample network traffic. Given the inherently low
packet rate of these traces, we segment the trace into smaller
windows and replay multiple windows concurrently. This
approach increases the offered load while preserving the
intrinsic characteristics of the traffic. For the experiments
involving LLM prompts, we employed the OpenAl API,
Google Vertex-Al API, and CodeLlama-34B-Instruct run on
an NVIDIA A100 80 GB GPU. To have a fair comparison, we
use LangChain [17] to interact with different models.

4.1 Accuracy of Code Analysis

Our initial evaluation concentrated on the capability of
current LLMs to analyze the semantics of existing NFs. Given
the constraints on the maximum number of input tokens
(per prompt) in prevalent models, we utilized OpenAI’s
GPT-3.5-Turbo, GPT-4-Turbo, CodeLlama-34B-Instruct, and
Gemini-1.0-Pro models. These models were selected based
on their capacity to handle extensive prompts, thereby
accommodating NFs source code within a prompt.

Our primary evaluation metrics are: (i) the accuracy of
each LLM, (ii) the associated costs, and (iii) the number
of tokens required for extracting the features delineated in
Section 3.1. To enhance the robustness and validity of our
findings, our sample set of NFs includes existing elements
and plugins within both the FastClick [1] and VPP [12]
frameworks. The test set comprises 18 modules containing 8
stateless and 10 stateful FastClick element and VPP plugins
representing a spectrum of common networking functions
and applications. To verify the consistency of the outcomes
provided by the LLMs, we set the temperature of models to
0.001 and repeat each prompt 10 times. Table 1 demonstrates
the accuracy of each LLM in evaluating these elements
and plugins.” The results indicate that GPT-4 Turbo stands
out for its high accuracy, highlighting its effectiveness for
integration within FLowMAGE.

Given the modular architecture of current packet
processing frameworks, as discussed in Section 3, the code
extracted for almost all” NFs generally fits within the
prompts without surpassing the input token limits imposed
by each model. In our experiments, the average token count
utilized for analyzing each NF stood at 7164, with the smallest
being 1168 tokens for a stateless MAC address swapper
in FastClick, and the largest reaching 31570 tokens for
processing an Access Control List (ACL) implemented in
VPP. This efficiency in token usage translates to a very low
processing cost, with the most extensive NF codebase costing
$0.31 per analysis using GPT-4 Turbo. The price is similarly
low for other models.

“The detailed results are available in Appendix C.
TExcept one that is discussed in Appendix C.
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Table 1. Accuracy of LLMs in analyzing FastClick elements
and VPP plugins. Each cell denotes the number of correct
assessments out of 18 NFs in total. Llama refers to
CodeLlama-34B-Instruct, and Gemini refers to Gemini-1.0-
Pro.

. OpenAl GPT
Attribute 4 Turbo 3.5 Turbo Llama Gemini
Statefulness 18/18 15/18 11/18 15/18
Flow definition 10/10 8/10 4/10 8/10
R/W intensity 9/10 7/10 3/10 6/10
Pointer chasing 9/10 6/10 4/10 6/10

How reliable is the estimate of code complexity?
To assess the precision of LLMs in evaluating the code
complexity between pairs of stateful NFs, we formed 30
distinct NF pairs and utilized GPT-4-Turbo for the complexity
comparison. Our results show that GPT-4-Turbo consistently
identified the NF with more codebase complexity in all
scenarios. The experiments had an average token usage of
13661, peaking at 46107 and bottoming out at 4379. Note
that, we limited our analysis to GPT-4-Turbo exclusively as
each prompt included the source code for two NFs, thereby
exceeding the token capacity of the other models (i.e., GPT-
3.5 Turbo and Gemini-1.0-Pro) or causing significantly high
response time (when using CodeLlama-34B-Instruct) in some
scenarios.

4.2 FLOWMAGE’s Performance Improvement

To highlight the benefits of FLowMAGE, we set up several
chains of stateful NFs on our DUT. Our objective is to
compare the highest throughput achieved when employing
FLOowWMAGE’s optimizations against those obtained using
a standard deployment configuration, where all NFs share
states across cores to represent state-of-the-art systems. For
these experiments, we rely on the unmodified version of
FastClick (i.e., vanilla FastClick).

In our initial experiments, we create a chain combining
a Policer and a Source IP Tracker. The Policer maintains
state information for each destination IP address, while
the Source IP Tracker monitors traffic data for each source
IP address. This chain serves as an illustrative example
due to (i) its simplicity, featuring only two NFs, (ii) the
mutually exclusive flow definitions of the NFs preventing a
shared-nothing model for both simultaneously; and (iii) the
minimal per-flow data storage requirements of the two NFs,
which allows us to assess the effectiveness of FLowMAGE in
minimizing state sharing overhead.

Figure 4 demonstrates the maximum throughput achieved
by FLOWMAGE in comparison to vanilla FastClick across
a range of CPU core allocations. Our results show that
vanilla FastClick saturates at 60 Mpps upon scaling up to
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Figure 4. FLowMAGE improves the performance of a chain
of network functions consisting of a Policer and a Source IP
Tracker by up to 2x by efficiently deploying the chain.

8 cores. This is attributed to the fact that as more cores are
introduced, the system requires more coordination for state
access among these cores, leading to throughput saturation.

In addition to the previous experiment, we executed a
more intricate scenario by chaining three stateful NFs—a
Policer, a FSC, and a PSD—on our DUT. This experiment
highlights FLowMAGE’s ability to identify the most optimized
configuration and shows the impact of employing the LLM
for complexity comparison within the solver component.

The Policer and the PSD maintain flow states per
destination and source IP addresses, respectively, whereas
the FSC keeps data per 5-tuple attributes of packets.
Leveraging the meta-information extracted for each NF,
FLowMAGE detects that dispatching packets according to the
source IP address among cores facilitates a shared-nothing
architecture for the PSD and FSC, although the Policer
requires state sharing across cores. Conversely, utilizing the
destination IP address as the RSS key allows the Policer and
FSC to adopt a shared-nothing model, leaving the PSD to
share states. Confronted with two equally viable solutions,
if the CCE feature in the solver component is enabled, the
solver automatically uses the LLM to compare the complexity
of the Policer and PSD codebases. This comparison enables
FLOWMAGE to select the optimal RSS configuration, favoring
the NF with the more complex codebase.

Figure 5 shows the significant performance improvement
(i.e., 8.4x) offered by FLowMAGE over FastClick in this
scenario when various CPU cores are allocated to the
processing framework. In the FastClick, RSS dispatches
packets based on the 5-tuple attribute, enabling a shared-
nothing model for the FSC but necessitating shared states
for both the Policer and the PSD. Additionally, the figure
illustrates that enabling CCE feature could further improve
the throughput by up to 30% (11X in comparison to FastClick)
in such scenarios. It is important to note that FastClick’s
poor performance in this scenario stems from the significant
sharing overhead of the PSD, which necessitates sharing
relatively large states across cores. The numbers align with
the results reported in other studies (e.g., Maestro [34]).
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Figure 5. FLOWMAGE can successfully find the efficient RSS
configuration when deploying a chain of NFs composed of a
Policer, a FSC, and a PSD. Using CCE further amplifies the
performance improvements achieved by FLOwWMAGE.

5 Discussion

Would in-context learning or fine-tuning of LLMs
affect the system’s accuracy? In its current version,
FLOWMAGE leverages LLMs to identify features with
discrete values, allowing for precise responses without
the need for in-context learning or model fine-tuning.
Additionally, given the extensive token requirements for
each prompt, incorporating sample code for in-context
learning is impractical, as it might further strain the token
limit or reduce the accuracy. Nevertheless, fine-tuning
presents a promising path for enhancing accuracy, especially
for features expressed as continuous numbers. For instance,
a fine-tuned LLM can be used to (i) extract the state size
maintained by each NF per flow or (ii) predict the average
number of irregular memory accesses to process a packet
which enhances the accuracy of FLOWMAGE in detecting the
optimized RSS configuration. Future iterations of FLowMAGE
can explore the integration of these capabilities, potentially
elevating the model’s predictive precision and utility in
assessing NFs.

Are there other useful information to extract from the
source code of NFs? LLMs can analyze not just high-level
programming languages but also understand the low-level
syntax of network functions, such as assembly or LLVM IR
bitcode. This capability enables LLMs to potentially estimate
system-level performance metrics for NFs (e.g., the average
number of instructions or CPU cycles required per packet),
which are challenging to perform when using traditional
approaches such as exhaustive symbolic execution. These
metrics are essential for a variety of purposes, including
efficient resource allocation to NFs [22].

Does RSS configuration affect the load imbalance
among CPU cores? In some scenarios where the network
traffic contains packets with a limited range of values per
5-tuple attributes, the configuration of RSS can indeed
influence the distribution of load across CPU cores. More
specifically, if packet dispatching relies on a small subset of
5-tuple attributes, it can potentially lead to load imbalances,
partial packet drops, and increased tail latencies. However,
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we did not observe this issue in our experiments as we
utilized CAIDA trace files with a large diversity of value
for all attributes of packets. While the current iteration of
FLowMAGE does not directly tackle these challenges, the
framework-agnostic design of FLowMAGE allows for the
incorporation of existing solutions like RSS++ [2] to mitigate
potential load imbalances effectively. We leave addressing
this issue as a future work.

What are the consequences if the LLM is inaccurate?
LLMs are subjected to hallucinations and inconsistent
responses. For instance, Section 4.1 showed that LLMs do not
always provide correct analysis of NFs. Incorrect responses
may cause performance degradations or violate application
semantics. More specifically, semantic violations can happen
if the extracted flow definition (F) of an NF is a superset of the
correct flow definition. For example, if an LLM incorrectly
identifies the flow definition of a PSD as source IP and source
port (instead of the source IP address), the PSD will not be
able to track destination port used by a user, as packets with
the same source IP address and various source ports end up in
different cores, which cause incorrect behavior when using
shared-nothing architecture. To minimize the consequences
of inaccurate code analysis, integrating an LLM into a
production-grade deployment system requires performing
additional checks and verification (e.g., keep humans in the
loop) to ensure the correctness of the responses generated
by the LLM. Moreover, it is possible to combine existing
deterministic approaches with LLMs to eliminate the risk of
inaccuracies causing semantic violations. For instance, an
LLM can be used to guide symbolic execution engines.

6 Conclusion

The rise of LLMs has opened up new opportunities to build
and optimize networked systems. This paper demonstrated
the benefits of using LLMs to perform code analysis
and extract useful information. While we primarily focus
on analyzing NFs code, we believe other networking
applications could potentially benefit from code analysis
capabilities of LLMs. We hope our work motivates further
research in this direction.
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A CCE Prompt Structure

As outlined in Section 3.2, in situations where FLOWMAGE
identifies multiple viable configurations for RSS, it proceeds
with a CCE phase. This phase involves comparing the
codebase complexity of NFs and selecting a configuration
that benefits the NF requiring the most processing per packet.
FLOWMAGE automatically generates prompts that include
the source code of NF pairs within a chain and submits these
prompts to an LLM. Figure 6 provides an example of such
generated prompts.

P System ~
Your task is to analyze C or C++ code of two network functions
provided by the user. The user will ask you to estimate which one of

\the two NFs requires more processing per packet. )

/H— User \

ere is the C or C++ code of the network function to analyze:

class FlowIPNAT:public FlowStateElement<FlowIPNAT,NATEntryIN>, TCPHelper {
public:
const char *class_name() const override { return "FlowIPNAT"; }
const char *port_count() const override { return "1/1"; }
const char *processing() const override { return PUSH; }

class IPortScanDetector : public IFlowManager<IPSDState> {

public:
const char *class_name() const override { return "IPortScanDetector";}
const char *port_count() const override { return PORTS_1_1;}
const char *processing() const override { return PUSH;}

Provide a JSON containing a single key 'complexity' that contains the

\name of the NF that requires more processing per packet. /
Al ——
"result": {
“complexity": “IPortScanDetector"
}

Figure 6. FLOWMAGE automatically crafts a prompt and
sends it to an LLM to compare the codebase complexity of
two NFs if it can not decide on the best RSS configuration
based on initially extracted attributes of each NF.

B Sample FLowMAGE’s Configuration

To apply the optimized configuration, FLOWMAGE receives a
FastClick configuration file as input, automatically identifies
the existing elements within the chain, and modifies the
configuration of each element to maximize performance.
Figure 7 illustrates a sample scenario in which a PSD, a

Ghasemirahni, et al.

Policer, and a FSC are interconnected in a chain, with 16
cores allocated to the system. In this setup, FLOWMAGE
sets the RSS configuration to dispatch packets based on
the source IP address (see the modified parameter in the
“FromDPDKDevice” element). Additionally, it configures the
Policer instances to share states across cores while the others
achieve a shared-nothing model.

P Input FastClick Configuration

£do :: FromDPDKDevice($port, MAXTHREADS 16, NDESC 256)
Classifier(12/0800)

MarkIPHeader (OFFSET 14)

psd :: IPortScanDetector(SIZE 80600000)

policer :: IPolicer(SIZE 8000000)
IFlowCounter(SIZE 64000000)

tde :: ToDPDKDevice($port, VERBOSE 99, TIMEOUT -1);

- )

< =

- FlowMage Output Configuration -

flowCounter ::

fd@ :: FromDPDKDevice($port, HASHFUNC “src_ip”, MAXTHREADS 16, NDESC 256)
Classifier(12/0800)

MarkIPHeader (OFFSET 14)

psd :: IPortScanDetector(SIZE 8000000, SHARED false)

policer :: IPolicer(SIZE 8000000, SHARED true)

IFlowCounter(SIZE 64000000, SHARED false)

tde :: ToDPDKDevice($port, VERBOSE 99, TIMEOUT -1);

- )

flowCounter ::

vV vV vV Vv v v

Figure 7. FLOWMAGE automatically modifies an input
configuration file to maximize the chain’s performance.
Modified parameters are denoted in green.

C Detailed Analysis of LLMs’ Accuracy

We provide a detailed report of results obtained from
evaluating the accuracy of LLMs in analyzing NFs with
diverse characteristics. Table 2 enumerates the FastClick
elements and VPP plugins that were included in our study.
This selection contains a mix of stateful and stateless modules
that are commonly used in various Ethernet-based NFs.
Moreover, the table demonstrates the effectiveness of each
LLM in identifying stateful NFs, i.e., indicating the precision
of each LLM in differentiating between stateful and stateless
network functions based on the provided source codes.

Additionally, Table 3 provides a brief report about the
correct properties of examined stateful NFs, which serve
as the benchmark for assessing the LLMs’ accuracy. A
comparison of the results across different LLMs, as depicted
in Table 4, reveals that GPT-4-Turbo exhibits near-perfect
accuracy in detecting the correct properties of the attributes
under test in these experiments.

It is important to note that, in certain instances (e.g., the
VPP’s ACL plugin), the extensive size of the codebase either
exceeds the model’s input token limit or significantly extends
the response time. Such instances are marked with a “-” in
the corresponding tables and are considered as failures in
our evaluation of model accuracy, reported in Section 4.1.
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Table 2. All elements and plugins used in Section 4.1 to evaluate the accuracy of LLMs on detecting statefulness. GPT models
refer to the Turbo versions, Llama refers to CodeLlama-34B-Instruct, and Gemini refers to Gemini-1.0-Pro. v/, X, and - represent
correct response, wrong response, and failed tests, respectively.

. .- Model’s Accuracy
NF (element/plugin) | Framework | Description GPT35 | GPTed | 1lama | Gemini
IPortScanDetector FastClick | Stateful - Counts destination ports each host has touched. v v v v
IPolicer FastClick Stateful - Limits users’ download rate. v v v v
ISourceCounter FastClick | Stateful - Tracks active connections per source IP. v v X v
FlowRateLimiter FastClick | Stateful - Limits packet rate per TCP/UDP connection. v v X v
FlowHyperScan FastClick | Stateful - Flow-based IDS using the HyperScan library. v v X v
FlowCounter FastClick | Stateful - Counts the number of flows & packets per flow. v v v v
FlowIPLoadBalancer FastClick | Stateful - TCP & UDP load-balancer v v X v
CheckIPHeader FastClick | Stateless - Verifies correctness of IP headers v v v v
AverageCounter FastClick | Stateless - Measures historical packet count and rate v v v X
BatchStats FastClick | Stateless - Tracks statistics about received batches. X v v v
EtherEncap FastClick | Stateless - Encapsulates packets in Ethernet header. v v v v
EtherMirror FastClick | Stateless - Swaps Ethernet source and destination. v v v v
HashSwitch FastClick | Stateless - Classifies packets by hash of contents. v v v v
EnsureEther FastClick | Stateless - Ensures Ethernet encapsulated IP packets. v v v v
nat64 VPP Stateful - Network Address and Protocol Translator v v - v
b VPP Stateful - Maglev-like load balancer. v v - v
acl VPP Stateful - Access Control List = v = =
adl VPP Stateless - Source address allow/deny list X v v X

Table 3. Attributes of stateful elements and plugins used in Section 4.1 to evaluate the accuracy of LLMs.

NF (element/plugin) | Flow Definition | R/W Intensity | Pointer Chasing
IPortScanDetector src_ip Per Packet Yes
IPolicer dst_ip Per Packet No
ISourceCounter src_ip Per Packet No
FlowRateLimiter 5-tuple Per Packet No
FlowHyperScan 5-tuple Per Packet No
FlowCounter 5-tuple Per Packet No
FlowIPLoadBalancer 5-tuple Per Flow No
Ib 5-tuple Per Flow Yes
acl 5-tuple Per Flow Yes
nat64 5-tuple Per Packet Yes

Table 4. The ability of LLMs to extract attributes of stateful elements/plugins in detail. GPT models refer to the Turbo versions,
Llama refers to CodeLlama-34B-Instruct, and Gemini refers to Gemini-1.0-Pro. v/, X, and - represent correct response, wrong
response, and failed tests, respectively.

. Flow Definition R/W Intensity Pointer Chasing
NF (element/plugin) GPL GPL- GPL-
35 GPT-4 Llama Gemini 35 GPT-4 Llama Gemini 35 GPT-4 Llama Gemini

IPortScanDetector X v v v v v X v X v X X
IPolicer X v X v v N v v v v v v
ISourceCounter v v v v v v X v v v v v
FlowRateLimiter v v v v X v X v v v v v
FlowHyperScan v v X v v v X v v v X v
FlowCounter v v v X X v v X v v v v
FlowIPLoadBalancer v v X v v v v X v v X v
1b v v - v v X - X X v - X
acl - v - - v - - - v -
nat64 v v - v - v X X - X
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