
FAJITA: Stateful Packet Processing at 100 Million pps

HAMID GHASEMIRAHNI, KTH Royal Institute of Technology, Sweden
ALIREZA FARSHIN

∗
, NVIDIA, Sweden

MARIANO SCAZZARIELLO, KTH Royal Institute of Technology, Sweden
GERALD Q. MAGUIRE JR., KTH Royal Institute of Technology, Sweden
DEJAN KOSTIĆ, KTH Royal Institute of Technology, Sweden
MARCO CHIESA, KTH Royal Institute of Technology, Sweden

Data centers increasingly utilize commodity servers to deploy low-latency Network Functions (NFs). However,
the emergence of multi-hundred-gigabit-per-second network interface cards (NICs) has drastically increased
the performance expected from commodity servers. Additionally, recently introduced systems that store
packet payloads in temporary off-CPU locations (e.g., programmable switches, NICs, and RDMA servers)
further increase the load on NF servers, making packet processing even more challenging.

This paper demonstrates existing bottlenecks and challenges of state-of-the-art stateful packet processing
frameworks and proposes a system, called FAJITA, to tackle these challenges & accelerate stateful packet
processing on commodity hardware. FAJITA proposes an optimized processing pipeline for stateful network
functions to minimize memory accesses and overcome the overheads of accessing shared data structures
while ensuring efficient batch processing at every stage of the pipeline. Furthermore, FAJITA provides a
performant architecture to deploy high-performance network functions service chains containing stateful
elements with different state granularities. FAJITA improves the throughput and latency of high-speed stateful
network functions by ~2.43× compared to the most performant state-of-the-art solutions, enabling commodity
hardware to process up to ~178 Million 64-B packets per second (pps) using 16 cores.

CCS Concepts: • Networks → Middle boxes / network appliances; Data center networks; • Computer

systems organization→Multicore architectures.

Additional Key Words and Phrases: Packet Processing Frameworks, Stateful Network Functions.

ACM Reference Format:

Hamid Ghasemirahni, Alireza Farshin, Mariano Scazzariello, Gerald Q. Maguire Jr., Dejan Kostić, and Marco
Chiesa. 2024. FAJITA: Stateful Packet Processing at 100 Million pps. Proc. ACM Netw. 2, CoNEXT3, Article 14
(September 2024), 22 pages. https://doi.org/10.1145/3676861

1 INTRODUCTION
Recent advances in networking hardware have boosted the speed of Network Interface Cards (NICs)
and packet switching devices, facilitating faster Internet access [1, 2] and improving performance
in data centers [3]. CPU core frequencies and memory access speeds have failed to follow the
continuing growth in networking speeds [4, 5], and this has made packet processing challenging
on commodity hardware, especially when realizing high-throughput NFs that process hundreds

∗Work was done at KTH Royal Institute of Technology.

Authors’ Contact Information: Hamid Ghasemirahni, hamidgr@kth.se, KTH Royal Institute of Technology, Stockholm,
Sweden; Alireza Farshin, NVIDIA, Stockholm, Sweden; Mariano Scazzariello, KTH Royal Institute of Technology, Stockholm,
Sweden; Gerald Q. Maguire Jr., KTH Royal Institute of Technology, Stockholm, Sweden; Dejan Kostić, KTH Royal Institute
of Technology, Stockholm, Sweden; Marco Chiesa, KTH Royal Institute of Technology, Stockholm, Sweden.

This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0
License.

© 2024 Copyright held by the owner/author(s).
ACM 2834-5509/2024/9-ART14
https://doi.org/10.1145/3676861

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

HTTPS://ORCID.ORG/0000-0002-0034-5098
HTTPS://ORCID.ORG/0000-0001-5083-4052
HTTPS://ORCID.ORG/0000-0002-9780-873X
HTTPS://ORCID.ORG/0000-0002-6066-746X
HTTPS://ORCID.ORG/0000-0002-1256-1070
HTTPS://ORCID.ORG/0000-0002-9675-9729
https://doi.org/10.1145/3676861
https://orcid.org/0000-0002-0034-5098
https://orcid.org/0000-0001-5083-4052
https://orcid.org/0000-0002-9780-873X
https://orcid.org/0000-0002-6066-746X
https://orcid.org/0000-0002-1256-1070
https://orcid.org/0000-0002-9675-9729
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3676861

14:2 Hamid Ghasemirahni, et al.

of millions of packets per second (pps). In addition, recently-introduced systems have achieved
unparalleled throughput gains by storing packet payloads in temporary off-CPU locations, such
as programmable switches [6], NICs [7], or RDMA servers [8]. These systems must process large
amounts of packet headers (e.g., 64 B) on CPUs, which further increases the load on commodity
hardware and makes it even more challenging to build such systems. To process packets at
today’s high rates, recent works advocate: (𝑖) offloading computationally expensive operations
to programmable network devices & accelerators [9–13] and/or (𝑖𝑖) performing optimizations to
maximize the benefits provided by the CPU’s cache memories [14–19].
While offloading computation to external devices improves performance, stateful applications

that have to maintain per-flow data structures (e.g., load balancers, advanced traffic schedulers,
and security-related NFs) still struggle to achieve high throughput and low latency for two main
reasons. First, stateful NFs have a large memory footprint (i.e., potentially up to gigabytes of state
for millions of flows [8]). Unfortunately, today’s high-speed accelerators have a constrained SRAM
memory and registers (e.g., O(10MiB) that cannot hold these states within the ASIC switches [20]).
For instance, Switcharoo [21] can store up to ∼128-k flows (4-B per entry) in the data plane. Second,
the logic of many advanced packet processing applications (e.g., packet schedulers) cannot be
realized on high-speed accelerators, such as ASIC switches [8], thus requiring external CPUs.

CPU-based packet processing does not suffer from the above constraints; thus, a CPU may realize
arbitrary, advanced chain of stateful NFs. However, whenever the necessary state to process a packet
is unavailable in the fast cache memories, the processing core must retrieve it from the slower
DRAM memory. This retrieval pauses packet processing, significantly harming both throughput
and latency if the packet processing pipeline is not optimized for stateful NFs. Processing hundreds
of millions of packets per second is only possible when using multiple CPU cores, which requires
careful attention to achieve high performance. To achieve linear scaling, most of the existing
frameworks rely on shared-nothing architectures, where packets of the same flow are forwarded
to the same core via a load balancing mechanism (e.g., RSS, RSS++ [22], and Dyssect [23]). This
architecture prevents concurrent access to memory locations, avoiding the performance drop
caused by synchronization mechanisms.

 0

 40

 80

 120

 160

 200

FastClickDyssect VPP FastClick
+BR

FAJITA VPP FastClick
+BR

FAJITA

shared-nothing shared

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Framework

12.3

52.9
70.8 72.5

176.6

45.0
60.3

89.4

Fig. 1. FAJITA improves the throughput of NF

service chains: (𝑖) a Flow Statistics Counter

followed by a rate limiter and a Load Balancer

(shared-nothing region); and (𝑖𝑖) a source IP

counter followed by a policer and a Load

Balancer (shared region) when using 16 CPU

cores and receiving 64-B packets & 2 million

flows. BR stands for Batch Rebuilder, see § 2.2.

Nevertheless, employing this architecture is
not always feasible. For instance, when dealing
with multiple stateful NFs with different exclusive
definitions of flows, it is impossible to follow the
shared-nothing architecture across the entire chain of
NFs [24] (e.g., a source IP counter tracking the number
of distinct source IP addresses and a policer that relies
on destination IP addresses have mutually exclusive
definitions of flows). To tackle these challenges, this
paper introduces FAJITA as an optimized stateful
packet processing pipeline designed for commodity
hardware. FAJITA (𝑖) maximizes the efficiency
of each CPU core by combining the benefits of
existing processing pipelines and carefully leveraging
software prefetching machinery available in modern
CPUs. By doing so, FAJITA ensures that the essential
data required for processing a batch of packets is available in the CPU’s caches before the CPU needs
it, thereby maximizing data locality. Furthermore, FAJITA (𝑖𝑖) presents a cache-friendly solution
to minimize packet processing costs in scenarios where achieving a shared-nothing architecture
is impossible. Figure 1 shows that FAJITA can improve the performance of stateful NF service

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

FAJITA: Stateful Packet Processing at 100 Million pps 14:3

chains compared to existing state-of-the-art solutions (e.g., Dyssect, FastClick, and VPP), by at least
~2.4× & ~1.5× when using shared-nothing & shared architectures, respectively. To the best of our
knowledge, FAJITA is the first system that offers a performant solution for (𝑖) deploying stateful
NF service chains capable of processing ~178Mpps (i.e., ~1.4 Tbps with average 1-KiB packets)∗ and
(𝑖𝑖) supporting chains of NFs with different flow granularities.
Contributions. In this paper, we:
• Evaluate the performance of state-of-the-art packet processing frameworks when dealing with
stateful NFs and demonstrate bottlenecks that lead to considerable performance drops.

• Unveil challenges and crucial parameters that affect systems’ performance when designing an
efficient state-aware packet processing pipeline.

• Design, implement, and evaluate FAJITA to tackle these problems and maximize the performance
of the system even with NFs with different or mutually exclusive flow definitions.†

2 BACKGROUND ANDMOTIVATION
Stateful NFs present distinct challenges concerning memory utilization and processing speed,
hindering existing frameworks from achieving very high packet processing rates (often on
commodity servers). For example, Ribosome [8], a state-of-the-art architecture, sends only packets’
header to the NFs deployed on commodity servers while storing payloads on external devices,
resulting in server loads of potentially over a hundred million pps. In this section, we (𝑖) identify
three commonly-practiced principles for stateful packet processing that are essential to achieve high
performance and (𝑖𝑖) demonstrate that overlooking any of them negatively impacts performance
at high packet rates. To exemplify these principles, we run simple NFs deployed on several state-
of-the-art packet processing frameworks (specifically: FastClick [25], Vector Packet Processing
(VPP) [26], and Dyssect [23]) under various conditions. Moreover, we use a synthetic workload that
offers a configurable number of flows with 64-B packets to maximize the packet rate for a given
link bandwidth. Additionally, using 64-B packets emphasizes the importance of high throughput
for small packets, to support recently-introduced high-performance systems that only deliver the
packet header to NFs [6–8]. We utilize perf to monitor the performance of CPU counters (e.g.,
cache misses) on the Device Under Test (DUT); this profiling has negligible overhead.
Experimental setup. Our testbed contains two commodity servers interconnected via a
32× 400-Gbps Edgecore AS9516-32D switch equipped with an Intel® Tofino 2 ASIC [27]. One
server acts as a traffic generator; the other is our DUT that runs a stateful round-robin load balancer
unless specified otherwise. The traffic generator uses FastClick and measures different percentiles
of end-to-end latency. The DUT is equipped with NVIDIA Mellanox ConnectX®-7 @ 200-Gbps
NICs [2] and one Intel® Xeon® Gold 6444Y CPUs @ 3.60GHz with 32-KiB per-core L1 instruction,
48-KiB L1 data, & 2-MiB per-core L2 caches, and a 45-MiB shared Last Level Cache (LLC). The
Tofino switch makes clones of incoming packets with different source IP addresses to increase
the offered load on the DUT. We plot average values with min/max error bars (although in many
experiments, the range is small and almost invisible).

2.1 Principle 1: Minimize Memory Accesses
Stateful NFs typically store states per 5-tuple or with a coarser granularity, requiring a large
amount of memory space for millions of flows [28]. This state information needs to be retrieved
from potentially slow memory (e.g., DRAM) into higher cache levels (e.g., L1 cache) during packet
processing. Typically, when an NF receives a packet, it (𝑖) looks for the corresponding state

∗Realizing this throughput requires much faster links/ports and/or payload trimming mechanisms.
†All source codes are available at: https://github.com/FAJITA-Packet-Processing-Framework.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

https://github.com/FAJITA-Packet-Processing-Framework

14:4 Hamid Ghasemirahni, et al.

and retrieves it, and (𝑖𝑖) traverses the state data structure that may contain additional levels of
indirection, leading to more memory accesses. These memory accesses have a negative impact
on performance, as the CPU must frequently wait for data [29]. Unfortunately, instruction-level
parallelism and speculative execution (e.g., hardware prefetching and branch prediction) cannot
easily fill these waiting times, as the memory access pattern cannot be predicted.

 0

 20

 40

 60

 80

 100

 120

 140

 16 64 256 1024 4096
 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

L
L

C
 M

is
s
e

s
 /

 p
a
c
k
e
t

Total Number of Flows (k)

Throughput

LLC misses

Fig. 2. Increasing the number of flows

greatly reduces the performance of a

load balancer due to an increase in

the number of per-packet LLC misses.

Note that the x-axis is logarithmic.

To reduce the negative impact of managing state, stateful
NFs typically employ optimized hash table data structures
to ensure fast lookups (e.g., Cuckoo hashing [30, 31]) or fast
insertions (e.g., chained hashing) [32]. However, hash tables
remain one of the major bottlenecks in stateful NFs [33].
This issue is further exacerbated when the system operates
at high packet rates with a large number of flows. To
measure the correlation between the number of flows and
the throughput of stateful NFs, we use FastClick to deploy a
Load Balancer (LB) running on eight CPU cores and gradually
increase the number of flows passing through it. Figure 2
demonstrates that an increasing number of flows causes great
performance degradation in the LB due to the larger volume
of data that must be stored in the system’s memory. More
specifically, beyond 128-k flows the system’s performance
rapidly decreases, primarily due to higher LLC misses.
Additionally, more sophisticated NFs, such as advanced schedulers (e.g., Reframer [18]) and

security-related NFs (e.g., stateful Deep Packet Inspections (DPIs) & Port Scan Detectors (PSDs)),
store a large amount of per-flow data using advanced data structures with non-contiguous data.
This potentially translates to multiple irregular memory access patterns, leading to the so-called
pointer chasing problem. Since these indirect memory accesses are typically not predictable,
in most cases, there are longer CPU waits due to the unavailability of data in CPU caches.

 0

 15

 30

 45

 60

 75

 0 1 2 3 4 5
 0

 0.8

 1.6

 2.4

 3.2

 4

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

L
L

C
 M

is
s
e

s
 /

 p
a
c
k
e
t

Additional Indirect Accesses

Throughput
LLC misses

Fig. 3. Increasing the number of

irregular memory accesses required

for sophisticated NFs reduces the

throughput of a stateful NF due to an

increasing number of LLC misses.

To measure the impact of irregular memory accesses on
the system’s performance, we implement a synthetic NF on
FastClick, with a configurable number of indirect memory
accesses, to mimic the memory access overhead of various
NFs with complex data-structures. Figure 3 shows the impact
of each memory access on the system’s performance when the
NF is running on 8 CPU cores and receives 2-million flows.
How do existing systems address this issue? Packet
processing frameworks typically take two approaches to
implement a chain of stateful NFs. The first approach,
as done by VPP [26], maintains a separate hash table to
store states for each NF. In this model, each NF operates
independently of other NFs, allowing VPP to easily extend a
processing graph. However, this approach imposes additional
processing overhead due to performing multiple hash table
lookups/insertions and increased memory footprint.
The second approach, utilized by FastClick [25] and Dyssect [23], decouples flow management

from the actual processing of each NF. By doing so, a single hash table stores the data required by all
stateful NFs of a service chain and feeds each NF with the required data. More precisely, FastClick
aggregates all required per-flow states into a data structure called Flow Control Block (FCB) and
uses a single hash table to assign an FCB to each flow from a large FCB array (Figure 4a). In contrast,

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

FAJITA: Stateful Packet Processing at 100 Million pps 14:5

Flow Metadata

Hash Table

FCB Array

NF1 State Data
NF2 State Data NFk State Data…

Flow Control Block

(a) FastClick state aggregation schema.

Flow Metadata States Array*

NF2*NF1* NFk*…

NF1 State Data

Hash Table

Flow Entry

NF2 State Data

NFk State Data

(b) Dyssect state aggregation schema.

Fig. 4. FastClick vs. Dyssect state aggregation schema. Each red arrow denotes an irregular memory access.

Dyssect maintains a data structure called Flow Entry that keeps pointers to the corresponding state
location for each NF in the service chain.

 0

 20

 40

 60

 80

 100

LB FSC LB+FSC

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Network Function(s)

101.5 104.0

61.0
53.7

61.4
51.8

VPP

FastClick+BR

Fig. 5. VPP performs better than

FastClick when deploying stateful NFs

individually. The overheads of multiple

separate hash tables are exacerbated

with multiple NFs.

Consequently, this model requires at least one additional
memory access per NF compared to FastClick, reducing the
benefits of aggregating states (see Figure 4b). Figure 5 shows
the throughput of FastClick and VPP when running a round-
robin LB and an Access Control List (ACL) individually and
consecutively in a chain with 2-million flows with 64-B
packets. These results demonstrate that VPP (i.e., using the
first approach) performs significantly better than FastClick
(i.e., using the second approach) when running each NF

individually (due to better batching, see §2.2). However,
chaining multiple NFs together highlights the overheads of
using non-aggregated states. We only focus on VPP and
FastClick to show the impact of state aggregation; Dyssect
architecture is similar to FastClick, but it is slower (see §4.3).

2.2 Principle 2: Perform Batch Processing at Every Stage
The importance of batch processing in achieving high performance is widely acknowledged, as
it enhances CPU instruction locality and allows systems to fully utilize prefetching mechanisms
available in modern processors. However, existing state-of-the-art systems, tailored for stateful
packet processing, sacrifice batch processing at some stages of the pipeline to introduce other features
(e.g., state aggregation and load balancing). For instance, the state manager of FastClick breaks an
input batch of packets into per-flow batches and forwards these micro-batches through the pipeline,
preventing it from reaching the full potential of the underlying hardware. This behavior also
imposes overhead on packet transmission due to multiple transmit calls. To reduce the transmission
overhead, FastClick has recently introduced an element called Batch Rebuilder (BR) [34]; BR recreates
the batch by buffering micro-batches before transmission at the cost of adding queuing delay. This
behavior is also evident in Batchy [35] that rebuilds fragmented batches. Dyssect keeps batches
intact through the pipeline. However, its dynamic load balancing feature prevents Dyssect from fully

taking advantage of batch processing benefits. Dyssect assigns multiple shards (each encompassing
a hash table and additional statistics) to each core. Consequently, the state of different packets in a
batch may be in different hash tables, forcing Dyssect to process each packet independently in the
state manager, imposing a noticeable drop in performance.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

14:6 Hamid Ghasemirahni, et al.

2.3 Principle 3: Minimize Shared Memory
Existing packet processing frameworks typically follow a run-to-completion model on multi-
core servers, where each core instantiates the whole NF service chain and processes packets
independently. To achieve a “shared-nothing” architecture with zero synchronization overhead, the
majority of systems rely on RSS to dispatch packets among cores and guarantee flow-core affinity.
However, we identified two scenarios that necessitate employing a shared architecture, where
different cores operate on shared data structures, hence performing shared memory accesses.
Scenario 1: Efficient inter-core load balancing. In some conditions, RSS struggles to efficiently
distribute packets among CPU cores, primarily due to having a small number of active flows in a
short period of time and the uneven characteristics of flows (e.g., skewed size and different rates) [22,
36]. To address this, state-of-the-art systems propose architectures to fairly balance load among
cores by monitoring inter-core load imbalance for short periods and then dynamically migrating
active flows to different cores. There is a trade-off between accuracy and migration overhead,
as increasing the update frequency leads to a significant overhead of invoking the migration
process while increasing the monitoring period leads to a coarser estimation of load imbalance and,
consequently, lower load balancing accuracy. Additionally, existing solutions typically impose extra
overhead on the processing pipeline due to either using (𝑖) shared data structures for states [37] or
(𝑖𝑖) shared variables to monitor per-core load and collect statistics [23]. We argue that the added
overhead of existing load-balancing solutions prevents them from efficiently processing packets,
and one should employ them only in scenarios when dealing with adversarial traffic patterns
containing less than a few tens of flows per monitoring period. More specifically, §4.3 (𝑖) shows that
intra-server load balancing becomes unnecessary when the system processes more than hundreds
of flows in a short period, and (𝑖𝑖) quantifies the overheads of load balancing for Dyssect.
Scenario 2: Stateful NFs with diverse flow definitions. The definition of state is not exclusive
to the 5-tuple flow identifier. Some NFs use coarser granularity for flow definition (e.g., source IP
address for Port Scan Detector (PSD)); §A.1 gives examples of such NFs. In such cases, implementing
a shared-nothing architecture requires additional considerations including manually configuring
RSS, which is cumbersome. Maestro [38] and FlowMage [24] propose systems to simplify this task
by automatically configuring RSS. However, there are many cases where achieving a shared-nothing
architecture is theoretically impossible [24], regardless of the packet processing framework. Having
multiple NFs with exclusive flow definitions is an example of such a case (as highlighted in §1). For
instance, consider a chain of stateful NFs containing a policer followed by a PSD. In this scenario,
no RSS configuration guarantees flow-core affinity for both NFs at the same time, as the NFs use
exclusive flow definitions (i.e., the policer uses destination IP addresses, whereas PSD relies on
source IP addresses). Moreover, configuring RSS to dispatch packets based on either the source
or destination IP address of packets to achieve a shared-nothing architecture for each of the NFs
significantly increases the load imbalance among cores due to a reduction in the cardinality of
RSS hash input. In addition to the overheads of shared data structures, having multiple NFs with
different flow definitions prevents the packet processing framework from aggregating all states in a
single hash table. Consequently, we have no option except to rely on separate hash tables per flow
definition, which should be shared among cores. For instance, in the above example, aggregating
states for the policer and PSD is impossible due to the different keys they use to access the state for
a packet. §4.1.1 demonstrates the impact of having shared hash tables on performance.
We observed that existing packet processing frameworks (i.e., FastClick, VPP, and Dyssect)

overlook at least one of these principles, making them unable to process hundreds of millions of
packets per second with many active flows. Unlike the existing state-of-the-art frameworks (see
Table 1), FAJITA supports all three principles to accelerate stateful packet processing at 100 Mpps.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

FAJITA: Stateful Packet Processing at 100 Million pps 14:7

Table 1. Comparison of stateful packet processing frameworks respecting the three design principles.

Framework

Features: ✓indicates support, ✗indicates no support

Batch Processing Minimized Mem. Access Reduce Sync. Overhead
Dyssect ✓ ✗ ✗

VPP ✓ ✗ ✗

FastClick ✗ ✓ ✗

FAJITA ✓ ✓ ✓

3 FAJITA: STATEFUL PACKET PROCESSING AT 100 MILLION PPS

Flow Manager

NF1 NF2

NF1 NF2

NF1 NF2

NF1 NF2

State Blocks

Processing
Phase

Prefetching Phase

NF1 NF2

1

2

Fig. 6. FAJITA optimizes processing pipeline and

performs accelerated state retrieval.

Efficient stateful packet processing requires an
optimized architecture that effectively considers
all three principles discussed in §2. This
section presents our system, called FAJITA,
which addresses the shortcomings of existing
frameworks to realize high-performance stateful
NF chains on commodity hardware by (𝑖)
optimizing the processing pipeline to preserve

batches at every stage and enable batch state
lookups; (𝑖𝑖) exploiting software prefetching
to accelerate state retrieval at each stage

& hiding memory access overheads; (𝑖𝑖𝑖)
employing a performant architecture tomitigate

the synchronization overhead when NFs with
different flow definitions exist in the chain.
1 Optimized processing pipeline. FAJITA adapts the most optimized state aggregation
architecture (as done by FastClick, see §2.1 and Figure 4a) to take advantage of data locality
by keeping all state information required to process a packet in a contiguous memory block. When
receiving a batch of packets, FAJITA performs a bulk lookup in the hash table and retrieves all
state blocks required for processing the batch. The system allocates a fresh block to packets with
unsuccessful lookups and inserts it into the hash table. Next, FAJITA adds a small annotation to
each packet containing the address of its corresponding state block, eliminating the need to break
the input batch into smaller mini-batches (unlike FastClick). Consequently, only one memory access
is sufficient to access 5-tuple state information for each packet throughout the pipeline, regardless
of the number of stateful NFs in the chain.
2 Accelerated state retrieval. To address the overheads associated with fetching state
information and to provide efficient access to complex state data structures that may be used
in various NFs, FAJITA exploits software prefetching techniques provided by modern CPUs to
accelerate state retrieval and to maximize data locality. More specifically, the system utilizes
software prefetching to (𝑖) improve bulk lookup by prefetching buckets of the hash table, (𝑖𝑖)
compensate for the memory footprint of a large aggregated state by loading the appropriate part(s)
of state for each NF at the right time, and (𝑖𝑖𝑖) minimize the overheads of loading data structures
with non-contiguous data. Note that this process is mostly done in FAJITA’s architecture without
relying on software developers’ expertise to manually handle memory access overheads (as opposed
to VPP), thus simplifying the development of high-performance stateful NFs. Figure 6 shows the
processing pipeline in FAJITA when a chain of stateful NFs with the same flow granularity is
deployed (i.e., shared-nothing architecture).

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

14:8 Hamid Ghasemirahni, et al.

Auxiliary HT

NF1 State Data

NF1 Hash Table NF2 Hash Table

5-tuple State Block
NF1 State *
NF2 State * NF2 State Data

(a)

Core 0

Core 1

NF 2NF 1

Auxiliary HT

Auxiliary HT

Shared
HT

Shared
States

Shared
HT

Shared
States

(b)

Fig. 7. (a) Auxiliary HTs’ schema for supporting NFs with different flow granularities. (b) core 0 shows a

scenario with a successful lookup at the auxiliary HT, whereas core 1 depicts the scenario with a failed lookup.

As the <blue-orange> entry does not exist in the auxiliary HT, core 1 must perform two hash lookups in NF1

and NF2, while core 0 can retrieve state for the <green-pink> with a single hash lookup in the auxiliary HT.

3 Mitigating synchronization overhead. As discussed in §2.3, aggregating state information
is impossible when deploying NFs with various flow granularities in a chain since each NF utilizes
a different part of packet headers as hash tables’ keys (e.g., one NF uses destination IP addresses,
while another one uses the source IP address of packets as the key). This condition leaves systems
no choice but to maintain a separate hash table per NF, which hurts performance significantly
(see Figure 5).∗ Additionally, in some scenarios when NFs have exclusive flow definitions (e.g., a
chain consisting of a policer followed by a PSD), NFs are forced to use shared hash tables and data
structures among multiple cores regardless of RSS configuration and framework.
Inspired by the state aggregation architecture, FAJITA proposes a low-overhead solution to

reduce shared memory accesses. It adds an additional per-core hash table, called auxiliary HT,
to the beginning of the NF service chain. Auxiliary HTs use a 5-tuple as the key; this is aligned
with the default RSS configuration and guarantees per-flow consistency of data as well as efficient
load balancing of traffic among cores.† Auxiliary HTs enable FAJITA to perform only a single

expensive lookup/insertion from/into shared hash tables. When the first packet of a flow arrives,
FAJITA performs a lookup from shared hash tables and stores pointers to states in the auxiliary HT.
Consequently, the remaining lookups can be performed directly from the auxiliary HT without any
synchronization overhead. In cases where the chain contains NFs with 5-tuple flow granularity,
FAJITA dynamically aggregates the state information for corresponding NF(s) & stores them into
the auxiliary HT (avoiding having separate hash tables). As a result, for each packet, the state
information for NFs with 5-tuple flow granularity and pointers to the state data of NFs with coarser
flow definitions are aggregated in the same memory block. Figure 7 illustrates the state block
structure used in the auxiliary HT when two NFs with coarse definitions of flows exist in the chain.
Note that auxiliary HTs eliminate shared hash table lookups while CPU cores still need to access
the shared state to read/update information per flow (see Figure 7b). Consequently, FAJITA utilizes
locking mechanisms to update shared state information during the processing of a packet to ensure
the integrity of data.
When does the auxiliary HT reduce shared memory accesses? When at least one NF with
a 5-tuple flow definition exists in the chain, the auxiliary HT does not introduce any memory
access overhead since the system aggregates the state of those NFs in the auxiliary HT; hence,
the auxiliary HT always leads to fewer hash table lookups. In contrast, consider a scenario where

∗NFs with a similar granularity can still aggregate their states in a single hash table.
†It is possible to use different keys and RSS configurations.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

FAJITA: Stateful Packet Processing at 100 Million pps 14:9

ℎ NFs with various flow definitions are deployed on a server, each having a separate hash table
with a flow granularity other than 5-tuples. If we assume that the network traffic in a given time
window contains 𝑓 flows with the average size 𝑝 𝑓 , then without the auxiliary HT the total number
of accesses to the shared hash tables is 𝑁𝑛𝑜_𝑎𝑢𝑥 = 𝑓 ∗ 𝑝 𝑓 ∗ ℎ. With auxiliary HT, when the first
packet of a 5-tuple flow arrives, since no record exists for the corresponding flow in the auxiliary
HT, it causes an extra unsuccessful lookup and stores a pointer to the state in the auxiliary HT. For
the rest of the packets belonging to this flow, FAJITA can retrieve the state information directly
from the auxiliary HT thus avoiding additional lookups in the rest of the hash tables, thus the total
number of hash table accesses 𝑁𝑎𝑢𝑥 = 𝑓 ∗ (ℎ + 1) + 𝑓 ∗ (𝑝 𝑓 − 1). The auxiliary HT reduces hash table
lookups when 𝑁𝑛𝑜_𝑎𝑢𝑥 ≥ 𝑁𝑎𝑢𝑥 i.e., when 𝑝 𝑓 ≥ ℎ

ℎ−1 . The maximum value of ℎ
ℎ−1 (ℎ ∈ N𝑎𝑛𝑑 ℎ > 1)

is 2. Therefore, in the worst-case scenario, auxiliary HT leads to fewer shared hash table lookups
when the average flow size of traffic is greater than 2, which is satisfied even for highly skewed
network traffic. To put this value into perspective, we consider CAIDA to be a traffic trace with a
highly skewed flow size distribution [23]. Our analysis shows that the average number of packets
per flow in CAIDA is ~19.7. Increasing the number of NFs in the chain or the average number of
packets per flow further increases the benefits of auxiliary HT.

The combination of 1 , 2 , and 3 enables FAJITA to take full advantage of all three principles
essential for stateful packet processing at high rates. FAJITA reduces wasted CPU cycles & shared
memory accesses, and improves the performance of every stateful NF in the chain by making the
most out of caches, which is essential for high-speed packet processing. To avoid overheads of
active load balancing, FAJITA relies on RSS to dispatch packets among cores; see §4.3 for detailed
analysis. Moreover, FAJITA is the first packet processing framework that presents a solution for
supporting NF service chains with multiple flow granularities.

3.1 Implementation
We implemented FAJITA as an extension to FastClick. By doing so, we enable network developers
to benefit from both FAJITA and other optimizations previously integrated into FastClick. Next, we
explain the detailed implementation of our proposed optimizations into FastClick.
1 To realize an optimized packet processing pipeline, FAJITA (𝑖) leverages FastClick’s aggregated
per-flow data structure (i.e., FCB∗) to store all necessary data required by stateful NFs in a single
hash table, (𝑖𝑖) exploits DPDK’s Cuckoo hashing API (i.e., rte_hash) to perform bulk lookups, and
(𝑖𝑖𝑖) extends the packet metadata of FastClick to store 8 bytes of annotation per packet containing
a pointer to the corresponding FCB throughout the processing path.
2 To accelerate state retrieval, FAJITA uses x86 prefetching instructions to prefetch (𝑖) primary &
secondary buckets of the hash table during the bulk lookup†, (𝑖𝑖) the right cache line of the FCB that
stores the state belonging to each NF, and (𝑖𝑖𝑖) proactively load the states stored in advanced data
structures (i.e., containing indirect accesses). For the latter, FAJITA offers a customizable function
that allows developers to tailor the prefetching process to suit the specific data structures used by
each NF, offering flexibility and simplifying the development process.
Prefetching considerations. The use of software prefetching should be approached with care,
as its effectiveness depends on various factors, such as the prefetching time and memory access
patterns. Stateful NFs are particularly memory intensive, so inefficient use of prefetching can
cause cache pollution and waste memory bandwidth, ultimately negatively impacting performance.
Moreover, modern CPUs often include hardware prefetching capabilities, and the use of software
prefetching should be avoided when it could potentially conflict with hardware prefetching. For

∗As explained in §2.1; more details available in [39].
†This is inherently supported by rte_hash_lookup_bulk_data.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

14:10 Hamid Ghasemirahni, et al.

example, the hardware prefetching mechanism typically prefetches the next cache line(s) after
touching/loading a cache line. Therefore, FAJITA only utilizes software prefetching to fetch the
first cache line of large per-flow states and relies on hardware prefetching to do the rest.
3 During the initialization, FAJITA creates a pool of empty state blocks (i.e., FCB list). When
FAJITA uses shared-nothing architecture, it allocates memory in such a way that all states of a
flow can be packed back-to-back to maximize data locality. Conversely, when FAJITA needs to
share states among multiple cores, it separates states belonging to different flows by a cache line
to prevent the overhead of false sharing and avoid unnecessary cache line invalidations & cache
trashing due to hardware prefetching when different cores access different flow states. In the latter
case, when FAJITA receives a batch, it performs a bulk lookup in the auxiliary HT to fetch the list
of state blocks for the batch. FAJITA keeps a mask denoting unsuccessful lookups. For such cases,
FAJITA uses the provided mask to perform the required insertion/lookup in the shared hash tables.
At the end of processing a batch, FAJITA updates the missing state blocks in the auxiliary HT to
have a successful lookup for the further packets of the same flows. FAJITA also implements efficient
state removal for the latter case. To do so, FAJITAmaintains a counter for each coarse-grained state
data to keep track of the number of flows with finer-grained granularities sharing this state. For
example, multiple 5-tuple flows share the same state in a source IP rate limiter, where removing
the rate limiter state is only acceptable when all 5-tuple flows have either timed out or ended.

4 FAJITA EVALUATION
This section demonstrates the effectiveness of FAJITA in improving the performance of stateful
NFs. To do so, we use the same testbed described in §2 and compare FAJITA’s performance with
FastClick, Dyssect, and VPP as three state-of-the-art frameworks capable of deploying stateful NF
chains. Furthermore, we consider FastClick+BR as the baseline for FastClick, as Figure 1 highlighted
the overheads of FastClick without BR.
NF configurations. To ensure a fair comparison among all frameworks, we developed stateful
NFs with identical behavior across them. More specifically, we use chains of stateful NFs that
include a stateful round-robin load balancer, a Flow Statistics Counter (FSC), and a flow rate limiter.
Additionally, in experiments involving NFs with coarse flow definitions, we incorporate a policer
and a source IP tracker. The composition of the NF chain is stated for each experiment.
Traffic workload. We use both (𝑖) synthetic 64-B traces to show the full potential of FAJITAwhen
processing small-sized packets with the least spatial locality (i.e., consecutive packets belong to
different flows) and (𝑖𝑖) realistic traces (e.g., CAIDA and a university campus trace) to demonstrate
the applicability of our optimizations to other workloads. We chose two different realistic traces to
examine the effect of traffic locality. In particular, our campus trace is more bursty with fewer flows,
which represents a worst-case scenario for showcasing FAJITA’s improvements when dealing with
very skewed flow size distribution. As the realistic traces have a low packet rate, we split the trace
into smaller windows and then replay multiple windows in parallel to increase the offered load
without affecting the distribution and properties of flows. Additionally, we truncate packets to 64 B
to report the maximum possible throughput in terms of pps without saturating the link. We use
CAIDA traffic traces in the experiments unless stated otherwise.

4.1 Does FAJITA Improve Performance?
Figure 1 already showed the benefits of FAJITA, where it could achieve up to ~2.4× higher
throughput compared to the most performant state-of-the-art packet processing frameworks.
This section further evaluates the effectiveness of FAJITA in improving performance by looking
at the average and tail latency of stateful NFs. To do so, we measure the end-to-end latency of
packets processed by a stateful load balancer followed by a FSC deployed on the DUT with eight

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

FAJITA: Stateful Packet Processing at 100 Million pps 14:11

0

16

32

48

64

80

96

112

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Offered Load (Mpps)

FAJITA

VPP

FastClick+BR

(a) Throughput.

0

200

400

600

800

1000

0 20 40 60 80 100

A
v
e

ra
g

e
 L

a
te

n
c
y

 (
μ

s
)

Offered Load (Mpps)

FAJITA

VPP

FastClick+BR

(b) Average end-to-end latency.

0

200

400

600

800

1000

0 20 40 60 80 100

9
9

th
P

e
rc

e
n

ti
le

 L
a
te

n
c
y

 (
μ

s
)

Offered Load (Mpps)

FAJITA

VPP

FastClick+BR

(c) Tail (P99) latency.

Fig. 8. FAJITA significantly improves the DUT’s ability to process packets at various offered loads when

running a chain of stateful NFs consisting of a load balancer and a FSC on eight cores.

allocated CPU cores while changing the offered load. We change the offered load to have a better
understanding of FAJITA’s ability to process packets under different loads, especially when the
system is not overloaded. Figure 8 shows the achieved throughput (y-axis, in Mpps) along with
average and 99𝑡ℎ percentile end-to-end latency (y-axis, in µs) with respect to an increasing offered
load using FastClick, VPP, and FAJITA when running the chain.

The result demonstrates that FAJITA significantly improves the ability of the system to perform
stateful packet processing. More specifically, Figure 8a shows the ability of FAJITA to scale linearly
until the saturation point that happens at ~2× higher offered load compared to FastClick and
VPP (i.e., ~102Mpps vs. ~53Mpps). Additionally, comparing the average and tail latency values
in Figures 8b and 8c demonstrates the benefits of FAJITA even at lower rates when none of the
frameworks have reached their saturation points mostly due to the principles overlooked by
FastClick and VPP discussed in §2. More specifically, VPP requires multiple hash lookups to retrieve
state information per NF, while FastClick fails to process packets in a batch throughout the pipeline.
Finally, as shown in Figure 8c, FastClick suffers from significantly high tail latency even at very
low rates. This issue is mainly due to the added latency from the Batch Rebuilder element at the
end of the chain, whereas both VPP and FAJITA perform efficiently using adaptive batch sizes. We
provide more evaluations on the impact of each FAJITA’s optimization on the performance in §A.2
and §A.3.

 0

 20

 40

 60

 80

1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Available CPU Cores

VPP

FastClick+BR

FAJITA w/o Aux HT

FAJITA w/ Aux HT

Fig. 9. Auxiliary HTs enables FAJITA

to minimize synchronization overheads

for an NF chain composed of a source IP

counter, a policer, and a load balancer.

4.1.1 Auxiliary HT minimizes the shared memory overheads.
To demonstrate the benefits of FAJITA in scenarios where
implementing the shared-nothing architecture is not possible,
we deploy a chain of NFs consisting of a source IP counter,
followed by a policer, and a load balancer. The load balancer
uses 5-tuple flow identifiers and does not require sharing
states among cores; however, the other two NFs should share
their states, as RSS dispatches packets according to 5-tuple
flow identifiers. Figure 9 shows the maximum throughput
achieved by VPP, FastClick, and FAJITA (with & without
auxiliary HTs), while changing the number of cores to
quantify the overheads of state sharing. These results show
two main takeaways. First, even without the auxiliary HT,
FAJITA still achieves higher throughput than the other
frameworks despite sharing states among cores. Second, introducing auxiliary HTs enables FAJITA

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

14:12 Hamid Ghasemirahni, et al.

0

30

60

90

120

150

180

1 2 4 8 16

testbed limitation

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Available CPU Cores

FastClick+BR

VPP

FAJITA

(a) FSC.

0

30

60

90

120

150

180

1 2 4 8 16

testbed limitation

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Available CPU Cores

FastClick+BR

VPP

FAJITA

(b) FSC + LB.

0

30

60

90

120

150

180

1 2 4 8 16

testbed limitation

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Available CPU Cores

FastClick+BR

VPP

FAJITA

(c) FSC + LB + Rate Limiter.

Fig. 10. The maximum throughput each framework can tolerate at high rates when receiving the scaled

CAIDA traffic and deploying NF chains with different numbers of NFs.

to overcome the synchronization overheads of sharing data structure thanks to minimized shared
lookups, resulting in up to 50% higher throughput when using 16 CPU cores.

4.2 Does FAJITA Scale?
To examine the scalability of FAJITA, we conduct experiments with various numbers of
CPU cores allocated to the system when running chains with different numbers of stateful
NFs. As shown in Figure 10, the throughput achieved by FAJITA scales almost linearly in
all experiments regardless of the number of NFs in the chain, going up to ~178Mpps with
16 available CPU cores where we hit the testbed bottleneck. Note that VPP’s performance
is significantly higher when only one stateful NF is running on the server. Increasing the
number of stateful NFs causes performance to drop in VPP because of multiple hash lookups
and insertions while FAJITA tolerates the added processing overhead due to the optimized
processing pipeline and aggregated states. As discussed earlier, packets were truncated to 64-B
in experiments with high rates to report the maximum possible throughput in terms of pps.

 0

 40

 80

 120

 160

 200

64 128 256 512

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Packet Size (B)

FastClick+BR

VPP

FAJITA

Fig. 11. FAJITA’s benefit is consistent

when receiving various packet sizes.

Note that the y-axis is in Gbps.

FAJITA retains its benefits regardless of packet size.

We conduct an experiment with various packet sizes using
synthetic traces to ensure that larger packets do not affect
FAJITA’s performance benefit. Figure 11 shows the achieved
throughput (y-axis, in Gbps) with respect to different packet
lengths in bytes using FastClick, VPP, and FAJITAwhen using
four cores and running a chain of three NFs composing of a
FSC followed by a LB and a per flow rate limiter (i.e., similar
to the Figure 10c). We report the throughput in Gbps to see
the link saturation point. Increasing the packet size makes
FAJITA’s benefits more visible with the same ratio, reaching
the link’s full capacity at 512-B. As expected, FAJITA can
process packets with various sizes efficiently and with the
same improvement ratio.

4.3 Is RSS Sufficient for FAJITA?
Section 2.3 discussed the overheads of using advanced inter-core load balancing mechanisms, which
typically involve actively keeping track of per-core load and sharing data structures. In this section,
we examine the impact of load imbalance introduced by RSS on FAJITA when receiving traffic
with highly skewed flow size distribution. To achieve this, we generate synthetic traffic traces with
various numbers of active flows and measure the maximum throughput that packet processing

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

FAJITA: Stateful Packet Processing at 100 Million pps 14:13

 0

 20

 40

 60

 80

 32 64 128 256 512 1024 2048

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Flows (per 100-ms period)

Dyssect

FAJITA

(a)

 100

 200

 300

 400

 32 64 128 256 512 1024 2048

L
o

a
d

 I
m

b
a
la

n
c

e
 (

%
)

Flows (per 100-ms period)

FAJITA
Dyssect

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000

P
e
rc

e
n

ta
g

e
 o

f
P

a
c
k
e
ts

Flows (per 100-ms period)

CAIDA
Campus

(c)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5

L
o

a
d

 I
m

b
a
la

n
c

e
 (

%
)

Traffic Rate (Mpps)

Campus
CAIDA

(d)

Fig. 12. Impact of inter-core load imbalance caused by RSS. Our synthetic analysis (figures a and b with

logarithmic x-axis) shows the throughput and inter-core load imbalance with a varying number of active

flows in a 100-ms period. We show a similar trend in realistic traffic traces with skewed flow sizes in (c) and

(d). Note that (c) shows the CDF of packets per flow when replaying each trace at 5Mpps rate.

frameworks achieve when having less than 1% packet drop. The generated traffic traces contain
only elephant flows to introduce a high load imbalance among CPU cores on the DUT. Additionally,
the DUTmonitors the number of packets passing through each core every 100ms (i.e., the minimum
suggested monitoring period in RSS++ [22] and Dyssect [23]) and computes the traffic imbalance
factor, defined as the percentage difference between the highest and lowest number of packets
received by each core. We run a stateful NF (i.e., FSC) on FAJITA and Dyssect as the state-of-the-art
framework with an advanced load balancing mechanism. Moreover, we ensure that during the
experiment Dyssect reaches the desired load balance by invoking the migration process only once

as frequent migration of flows introduces a noticeable overhead on Dyssect.
Figures 12a and 12b demonstrate how varying number of elephant flows seen in a 100ms period

affects the load imbalance and consequently the throughput of FAJITA and Dyssect when 8 CPU
cores are allocated to the DUT. As shown in these figures, when receiving only tens of flows in a
processing window, the total throughput of FAJITA drops by ~40% due to the high load imbalance
among cores but recovers rapidly when the number of flows is beyond 300. Moreover, the figures
demonstrate that FAJITA achieves 50% higher throughput than Dyssect even when receiving only
32 active flows with a high load imbalance among CPU cores. This is primarily due to the overheads
discussed in §2. Additionally, we examined CAIDA and our campus trace as two realistic traffic
traces with highly skewed flow size distribution to measure the expected number of received
flows and load imbalance in 100ms periods. Figure 12c demonstrates the CDF of packets seen
in the monitoring period with respect to the number of flows when replaying the trace files at
5Mpps. Note that the number of flows increases linearly when increasing the offered load as more
packets appear during the monitoring period. We also measure the introduced load imbalance when
replaying our traffic traces at various rates when running FAJITA on 8 CPU cores (see Figure 12d).
Our results show that the introduced load imbalance drops to less than 30% when replaying traces
at 2Mpps rate, confirming the rationale behind FAJITA’s choice to rely on RSS at high packet rates
with possibly millions of active flows [8], instead of incurring the overheads in the processing
pipeline to implement a better load balancing mechanism.
Comparison against Dyssect. To better understand the benefits/overheads of inter-core load
balancing at high packet rates, we compare FAJITA with Dyssect, which uses a dynamic inter-core
load balancing mechanism. More specifically, we measure load imbalance factor, throughput, and
latency of FAJITA and Dyssect when changing the offered load. Additionally, to distinguish the
overheads of load balancing vs. potential pipeline inefficiencies, we alsomeasure the aforementioned
metrics when Dyssect does not perform load balancing. The results of our experiments have the
following takeaways. First, Figure 13a shows that employing load balancing mechanisms is more

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

14:14 Hamid Ghasemirahni, et al.

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

L
o

a
d

 I
m

b
a

la
n

c
e

 (
%

)

Offered Load (Gbps)

FAJITA
Dyssect - w/o LB
Dyssect

(a) Inter-core load imbalance.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80

D
ro

p
 R

a
te

 (
%

)

Offered Load (Gbps)

FAJITA
Dyssect - w/o LB
Dyssect

(b) Drop rate.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

A
v
e

ra
g

e
 L

a
te

n
c
y

 (
µ

s
)

Offered Load (Gbps)

FAJITA
Dyssect - w/o LB
Dyssect

(c) Average end-to-end latency.

Fig. 13. FAJITA vs. Dyssect when running a load balancer on eight cores and receiving CAIDA traffic. FAJITA

can process packets efficiently at line rate by simply relying on RSS while Dyssect experiences packet drops

despite improving the inter-core load imbalance.

beneficial at lower rates, which directly translates to fewer active flows (compare the load imbalance
percentage of FAJITA and Dyssect at ~5Gbps). Second, comparing to Dyssect with and without LB
demonstrates the overheads of load balancing (see post-10-Gbps regions in Figure 13b), causing
significant packet drops. Third, FAJITA’s throughput can efficiently scale without introducing
any packet drops or increased latency despite not having any load balancing mechanisms (see
Figure 13c), further highlighting the importance of having an optimized processing pipeline. Note
that FAJITA’s performance persists up to line rate; not shown for better visibility.

4.4 How Do Different Workloads Affect the Level of Performance Improvement?

 0

 20

 40

 60

 80

 100

 120

Synthetic CAIDA Campus

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Workload

42.6
36.9

58.7

97.1 96.0
104.3

48.2 48.9

85.7

FastClick+BR VPP FAJITA

Fig. 14. FAJITA improves the

throughput of various traffic workloads

when processing a stateful NF service

chain. Packets are truncated to 64-B.

We investigate the adaptability of FAJITA’s enhancements
across diverse workloads, as changing the traffic distribution
can affect the FAJITA’s benefits. Specifically, different traces
may have a different spatial locality [18], thereby influencing
cache locality. This directly affects the benefits coming
from the batch-breaking avoidance done by FAJITA. Second,
different traces have a different flow size distribution as
shown in §4.3, which can directly influence hash tables’ access
pattern. Figure 14 compares the throughput of FastClick, VPP,
and FAJITA when using various workloads for a stateful NF
chain composed of a LB, a FSC, and a flow rate limiter. The
results suggest that different workloads affect performance.
More specifically, systems achieve higher throughput with
our campus trace in comparison with CAIDA and synthetic
traces (i.e., with minimal traffic locality). Our analysis reveals
that the higher throughput is correlated with having a higher spatial locality in the campus trace,
resulting in fewer cache misses. However, FAJITA is still capable of improving throughput by ~22%
and ~77% compared to FastClick and VPP, respectively. This shows that the benefits of FAJITA are
still present, even for traffic workloads with a higher spatial locality.

4.5 Does FAJITA Change the Impact of Statefulness?
Section 2.1 showed the detrimental effect of statefulness on performance when increasing the
number of flows due to an increase in the system’s memory footprint and higher cache miss
rate. This section repeats the same experiment to demonstrate the impact of FAJITA on memory
overheads of NFs when dealing with various numbers of flows.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

FAJITA: Stateful Packet Processing at 100 Million pps 14:15

 0

 20

 40

 60

 80

 100

 120

 140

 16 64 256 1024 4096

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Total Number of Flows (k)

FAJITA
FastClick+BR

(a) Throughput.

 0

 0.4

 0.8

 1.2

 1.6

 2

 16 64 256 1024 4096

L
L

C
 M

is
s
e

s
 /
 P

a
c
k
e
t

Total Number of Flows (k)

FAJITA
FastClick+BR

(b) Avg. LLC misses.

Fig. 15. FAJITA improves the tolerance of the system for

statefulness; it achieves higher throughput with a larger

number of active flows, correlated with fewer LLC misses.

Figure 15 shows the throughput and
per-packet LLC misses for both FAJITA
and FastClick when processing different
numbers of flows containing 64-B packets.
This result further highlights the benefits
of employing FAJITA’s processing path
optimizations, which significantly reduces
the overheads of statefulness, i.e., the
throughput is affected by less than 20%,
even with 4-M flows, compared to a 60%
throughput drop in the case of FastClick,
which shows the impact of 3× fewer per-
packet LLC misses.

5 FREQUENTLY ASKED QUESTIONS
Does the auxiliary HT’s size affect FAJITA’s performance? Since the auxiliary HT uses the
5-tuple as the key, increasing the number of flows can potentially lead to higher memory allocation
and increase the memory footprint of the system. However, the auxiliary HT enables FAJITA to
skip multiple shared hash table accesses, resulting in less cache footprint and fewer LLC misses per
packet even though it increases the memory usage of the whole system (see AppendixA.4). Note
that, allocating more memory on a commodity server does not introduce an issue. Additionally, as
shown in Figure 15, FAJITA’s efficient pipeline and accelerated state retrieval sustains high memory
footprints and keeps the LLC misses at a low rate even when facing millions of active flows. Figure 7
already shows the benefit of using auxiliary HTs in terms of throughput.
Is it possible to implement the auxiliary HT on external devices? FAJITA automatically
deploys the auxiliary HT as a component of the processing pipeline on the CPU since this approach
(𝑖) makes the framework independent of existing hardware and makes the deployment of NF
chains easier, and (𝑖𝑖) demonstrates the benefit of the auxiliary HT without extra hardware resources.
Introducing specialized accelerators (e.g., SmartNICs and FPGAs) to keep meta-information on a
per-flow basis will further reduce the memory footprints of the system with the cost of adding
complexity to the network configuration as well as increasing operational costs.
Do other optimizations affect FAJITA improvements? This paper mainly focused on
addressing the challenges of stateful packet processing in existing frameworks. However, there are
other bottlenecks (e.g., code inefficiency and unoptimized metadata management) that could affect
the performance of both stateless and stateful packet processing. Several works perform other
optimizations to address these challenges (e.g., PacketMill [15]); these efforts are complementary
to FAJITA’s optimizations and can potentially result in higher performance; see §6. Moreover,
integrating an overhead-free load balancing mechanism in FAJITA could potentially further improve
performance. For instance, Maestro [38] and FlowMage [24] can be used to configure RSS to ensure
shared-nothing architecture, which is orthogonal to FAJITA.

6 RELATEDWORK
To be best of our knowledge, FAJITA is the first to propose an optimized processing pipeline that
operates at >100 Mpps and supports stateful NF service chains with different flow definitions. This
section summarizes some related works that were not previously mentioned.
Optimized packet processing. Efforts to optimize packet processing can be divided into two
main categories. The first category exploits programmable network devices to accelerate packet
processing. More specifically, Tiara [40], Cheetah [9], Faild [41], Silkroad [28], and Beamer [42] focus

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

14:16 Hamid Ghasemirahni, et al.

on improving inter-server load balancing. Switcharoo [21] enables ASIC switches to implement
high-performance key-value stores entirely in the data plane, which could be beneficial for stateful
packet processing. Sirius [43], FlowBlaze [44], and Pigasus [45] use programmable devices (e.g.,ARM
cores and FPGAs) to perform stateful packet processing. The second category utilizes software
optimizations to improve packet processing. In particular, PacketMill [15] and Morpheus [19]
perform low-level optimizations (e.g., metadata management, run-time code instrumentation, and
compiler optimizations) to address software inefficiencies. CacheDirector [16] and DDIOTune [17]
tune Direct Cache Access (DCA) to reduce the tail latency of high-speed NFs. Clara [46], Gallium
[47], FlightPlan [48], and ExoPlane [49] propose systems to automatically analyze and offload parts
of packet processing into programmable hardware. Furthermore, LemonNFV [50] consolidates
heterogeneous NFs without code modifications. Our work is orthogonal to these efforts.
Hash tables and state management. Hash tables are extensively used in networking applications
for storing per-connection states. To achieve high performance, such systems commonly rely on
open addressing hash schemes [30, 51–53], which eliminate pointer chasing problem. Among
these, Cuckoo hashing [30] is popular in high-speed packet processing by providing worst-case
constant lookup time, which is the predominant operation in NFs. Hence, Cuckoo hash tables are
the foundation for a plethora of high-performance applications [54–56]. Girondi et al., [32] studied
the impact of using different hash tables on the performance of connection tracking for high-speed
NFs, highlighting the negative impact of shared hash tables on the performance for a stateful LB.
Prefetching. Software prefetching has been available for many years in advanced CPUs, and
many works have exploited this feature to improve the performance of their applications [57].
As discussed in §3.1, it is important to pay careful attention to the applications’ workflow when
using software prefetching to avoid polluting cache memories. More specifically, applications
should know when to use and not to use prefetching [58]. Software prefetching has been used to (𝑖)
improve access to remote memory [59], (𝑖𝑖) accelerate flash-based storage systems [60], and (𝑖𝑖𝑖)
boost indirect memory accesses [61, 62]. Seer [63] proposes a system that provides hints about the
upcoming packets which enables networking applications to implement high-performance caching
by prefetching to-be-used state data in advance, and Nostradamus [29] examines the potential
benefits of prefetching on the performance of stateful NFs when receiving such hints.

7 CONCLUSIONS
The unavailability of data in CPU caches can significantly affect performance when processing
packets at high link data rates. In particular, the performance of stateful NFs (with a higher memory
footprint) can be greatly affected by high wastage of CPU cycles when their data is unavailable in
cache memories. FAJITA proposes an optimized processing pipeline with accelerated hash table
lookups to maximize the benefits of cache memories for stateful packet processing. More specifically,
FAJITA (𝑖) minimizes memory access overheads by exploiting batching & software prefetching
machinery available in modern CPUs, and (𝑖𝑖) alleviates the overheads of accessing shared data
structures by introducing auxiliary hash tables.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their insightful comments and suggestions
on this paper. This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No
770889). This work has been partially supported by Vinnova (the Sweden’s Innovation Agency),
the Swedish Research Council (agreement No. 2021-04212), and KTH Digital Futures.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

FAJITA: Stateful Packet Processing at 100 Million pps 14:17

REFERENCES
[1] Intel Barefoot Networks. Tofino-2 Second-generation of World’s fastest P4-programmable Ethernet switch ASICs,

2020. https://www.barefootnetworks.com/products/brief-tofino-2/.
[2] NVIDIA Mellanox. ConnectX-7 400G Adapters, 2024. https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-

datasheet-connectx-7-ds-nv-us-2544471.
[3] Zhiping Yao, Jasmeet Bagga, Hany Morsy. Introducing Backpack: Our second-generation modular open switch,

November 2016. https://engineering.fb.com/data-center-engineering/introducing-backpack-our-second-generation-
modular-open-switch/.

[4] Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George Porter. Dark Packets and the End of Network
Scaling. In Proceedings of the 2018 Symposium on Architectures for Networking and Communications Systems, ANCS ’18,
page 1–14, New York, NY, USA, 2018. Association for Computing Machinery. https://doi.org/10.1145/3230718.3230727.

[5] Shelby Thomas, Geoffrey M. Voelker, and George Porter. CacheCloud: Towards Speed-of-light Datacenter
Communication. In 10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18), Boston, MA, July 2018.
USENIX Association. https://www.usenix.org/system/files/conference/hotcloud18/hotcloud18-paper-thomas.pdf.

[6] Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan Beschastnikh, and Margo Seltzer. Parking Packet Payload

with P4, page 274–281. Association for Computing Machinery, New York, NY, USA, 2020. https://doi.org/10.1145/
3386367.3431295.

[7] Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. The Benefits of General-Purpose on-NIC Memory, page
1130–1147. Association for Computing Machinery, New York, NY, USA, 2022. https://doi.org/10.1145/3503222.3507711.

[8] Mariano Scazzariello, Tommaso Caiazzi, Hamid Ghasemirahni, Tom Barbette, Dejan Kostić, and Marco Chiesa. A
High-Speed Stateful Packet Processing Approach for Tbps Programmable Switches. In 20th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 23), pages 1237–1255, Boston, MA, April 2023. USENIX
Association. https://www.usenix.org/conference/nsdi23/presentation/scazzariello.

[9] Tom Barbette, Chen Tang, Haoran Yao, Dejan Kostić, Gerald Q. Maguire Jr., Panagiotis Papadimitratos, and Marco
Chiesa. AHigh-Speed Load-Balancer Designwith Guaranteed Per-Connection-Consistency. In 17th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 20), pages 667–683, Santa Clara, CA, February 2020. USENIX
Association. https://www.usenix.org/conference/nsdi20/presentation/barbette.

[10] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli, Giuseppe Siracusano, Giuseppe
Bianchi, Aniello Cammarano, Alessandro Palumbo, Luca Petrucci, and Roberto Bifulco. hXDP: Efficient Software Packet
Processing on FPGANICs. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), pages
973–990. USENIX Association, November 2020. https://www.usenix.org/conference/osdi20/presentation/brunella.

[11] Tianyi Cui, Wei Zhang, Kaiyuan Zhang, and Arvind Krishnamurthy. Offloading Load Balancers onto SmartNICs, page
56–62. Association for Computing Machinery, New York, NY, USA, 2021. https://doi.org/10.1145/3476886.3477505.

[12] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and Gerald Q. Maguire Jr. Metron: NFV Service
Chains at the True Speed of the Underlying Hardware. In 15th USENIX Conference on Networked Systems Design and

Implementation, NSDI’18, pages 171–186, Renton, WA, April 2018. USENIX Association. https://www.usenix.org/
system/files/conference/nsdi18/nsdi18-katsikas.pdf.

[13] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Seshan. TEA:
Enabling State-Intensive Network Functions on Programmable Switches. In Proceedings of the Annual Conference of

the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols

for Computer Communication, SIGCOMM ’20, page 90–106, New York, NY, USA, July 2020. Association for Computing
Machinery. https://doi.org/10.1145/3387514.3405855.

[14] Bangwen Deng, Wenfei Wu, and Linhai Song. Redundant Logic Elimination in Network Functions. In Proceedings of

the Symposium on SDN Research, SOSR ’20, page 34–40, New York, NY, USA, March 2020. Association for Computing
Machinery. https://doi.org/10.1145/3373360.3380832.

[15] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. PacketMill: Toward per-core 100-
Gbps Networking. In Proceedings of the Twenty-Sixth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’21, New York, NY, USA, March 2021. Association for Computing Machinery.
https://doi.org/10.1145/3445814.3446724.

[16] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. Make the Most out of Last Level Cache in
Intel Processors. In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 8:1–8:17, New York, NY,
USA, March 2019. ACM. http://doi.acm.org/10.1145/3302424.3303977.

[17] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. Reexamining Direct Cache Access to Optimize
I/O Intensive Applications for Multi-hundred-gigabit Networks. In 2020 USENIX Annual Technical Conference (USENIX

ATC 20), pages 673–689. USENIX Association, July 2020. https://www.usenix.org/conference/atc20/presentation/
farshin.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

https://www.barefootnetworks.com/products/brief-tofino-2/
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://nvdam.widen.net/s/csf8rmnqwl/infiniband-ethernet-datasheet-connectx-7-ds-nv-us-2544471
https://engineering.fb.com/data-center-engineering/introducing-backpack-our-second-generation-modular-open-switch/
https://engineering.fb.com/data-center-engineering/introducing-backpack-our-second-generation-modular-open-switch/
https://doi.org/10.1145/3230718.3230727
https://www.usenix.org/system/files/conference/hotcloud18/hotcloud18-paper-thomas.pdf
https://doi.org/10.1145/3386367.3431295
https://doi.org/10.1145/3386367.3431295
https://doi.org/10.1145/3503222.3507711
https://www.usenix.org/conference/nsdi23/presentation/scazzariello
https://www.usenix.org/conference/nsdi20/presentation/barbette
https://www.usenix.org/conference/osdi20/presentation/brunella
https://doi.org/10.1145/3476886.3477505
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
https://doi.org/10.1145/3387514.3405855
https://doi.org/10.1145/3373360.3380832
https://doi.org/10.1145/3445814.3446724
http://doi.acm.org/10.1145/3302424.3303977
https://www.usenix.org/conference/atc20/presentation/farshin
https://www.usenix.org/conference/atc20/presentation/farshin

14:18 Hamid Ghasemirahni, et al.

[18] Hamid Ghasemirahni, Tom Barbette, Georgios P. Katsikas, Alireza Farshin, Amir Roozbeh, Massimo Girondi, Marco
Chiesa, Gerald Q. Maguire Jr., and Dejan Kostić. Packet Order Matters! Improving Application Performance by
Deliberately Delaying Packets. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22),
pages 807–827, Renton, WA, April 2022. USENIX Association. https://www.usenix.org/conference/nsdi22/presentation/
ghasemirahni.

[19] Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gábor Rétvári, and Gianni Antichi. Domain Specific Run Time
Optimization for Software Data Planes. In Proceedings of the 27th ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS 2022, page 1148–1164, New York, NY, USA, February
2022. Association for Computing Machinery. https://doi.org/10.1145/3503222.3507769.

[20] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando Mujica, and Mark
Horowitz. Forwarding Metamorphosis: Fast Programmable Match-Action Processing in Hardware for SDN. SIGCOMM

Comput. Commun. Rev., 43(4):99–110, August 2013. https://doi.org/10.1145/2486001.2486011.
[21] Tommaso Caiazzi, Mariano Scazzariello, and Marco Chiesa. Millions of Low-Latency State Insertions on ASIC Switches.

Proc. ACM Netw., 1(CoNEXT3), November 2023. https://doi.org/10.1145/3629144.
[22] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire Jr., and Dejan Kostić. RSS++: load and state-aware receive

side scaling. In Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies,
CoNEXT ’19, pages 318–333, New York, NY, USA, December 2019. ACM. http://doi.acm.org/10.1145/3359989.3365412.

[23] Fabrício B Carvalho, Ronaldo A Ferreira, Ítalo Cunha, Marcos AM Vieira, and Murali K Ramanathan. Dyssect: Dynamic
scaling of stateful network functions. In IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pages
1529–1538. IEEE, May 2022. https://doi.org/10.1109/INFOCOM48880.2022.9796848.

[24] Hamid Ghasemirahni, Alireza Farshin, Mariano Scazzariello, Marco Chiesa, and Dejan Kostić. Deploying Stateful
Network Functions Efficiently using Large Language Models. In Proceedings of the 4th Workshop on Machine Learning

and Systems, EuroMLSys ’24, page 28–38, New York, NY, USA, April 2024. Association for Computing Machinery.
https://doi.org/10.1145/3642970.3655836.

[25] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace packet processing. In Proceedings of the Eleventh

ACM/IEEE Symposium on Architectures for Networking and Communications Systems, ANCS ’15, pages 5–16, Washington,
DC, USA, May 2015. IEEE Computer Society. http://dl.acm.org/citation.cfm?id=2772722.2772727.

[26] Leonardo Linguaglossa, Dario Rossi, Salvatore Pontarelli, Dave Barach, Damjan Marjon, and Pierre Pfister. High-speed
data plane and network functions virtualization by vectorizing packet processing. Computer Networks, 149:187–199,
February 2019. https://www.sciencedirect.com/science/article/pii/S1389128618312957.

[27] Intel. Tofino®2, 2023. https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-
switch/tofino-2-series.html.

[28] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. SilkRoad: Making Stateful Layer-4 Load
Balancing Fast and Cheap Using Switching ASICs. In Proceedings of the Conference of the ACM Special Interest Group

on Data Communication, SIGCOMM ’17, page 15–28, New York, NY, USA, August 2017. Association for Computing
Machinery. https://doi.org/10.1145/3098822.3098824.

[29] Hamid Ghasemirahni, Alireza Farshin, Dejan Kostic, and Marco Chiesa. Just-in-Time Packet State Prefetching, July
2024. https://arxiv.org/abs/2407.04344.

[30] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. J. Algorithms, 51(2):122–144, May 2004. https://doi.org/
10.1016/j.jalgor.2003.12.002.

[31] Nicolas Le Scouarnec. Cuckoo++ hash tables: High-performance hash tables for networking applications. In Proceedings
of the 2018 Symposium on Architectures for Networking and Communications Systems, pages 41–54, July 2018. https:
//doi.org/10.1145/3230718.3232629.

[32] Massimo Girondi, Marco Chiesa, and Tom Barbette. High-speed Connection Tracking in Modern Servers. In 2021 IEEE

22nd International Conference on High Performance Switching and Routing (HPSR), pages 1–8. IEEE, June 2021.
[33] Yipeng Wang, Sameh Gobriel, Ren Wang, Tsung-Yuan Charlie Tai, and Cristian Dumitrescu. Hash table design and

optimization for software virtual switches. In Proceedings of the 2018 Afternoon Workshop on Kernel Bypassing Networks,
pages 22–28. Association for Computing Machinery, August 2018. https://doi.org/10.1145/3229538.3229542.

[34] FastClick. MinBatch Element. https://github.com/tbarbette/fastclick/blob/main/elements/standard/minbatch.hh, 2023.
[35] Tamás Lévai, Felicián Németh, Barath Raghavan, and Gabor Retvari. Batchy: Batch-scheduling Data Flow Graphs with

Service-level Objectives . In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20),
pages 633–649, Santa Clara, CA, February 2020. USENIX Association. https://www.usenix.org/conference/nsdi20/
presentation/levai.

[36] Hugo Sadok, Miguel Elias M Campista, and Luís Henrique MK Costa. A Case for Spraying Packets in Software
Middleboxes. In Proceedings of the 17th ACM Workshop on Hot Topics in Networks, HotNets ’18, pages 127–133, New
York, NY, USA, November 2018. ACM. http://doi.acm.org/10.1145/3286062.3286081.

[37] Tom Barbette. Public repository with all the experiments conducted in the course of the RSS++ paper, 2019.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

https://www.usenix.org/conference/nsdi22/presentation/ghasemirahni
https://www.usenix.org/conference/nsdi22/presentation/ghasemirahni
https://doi.org/10.1145/3503222.3507769
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1145/3629144
http://doi.acm.org/10.1145/3359989.3365412
https://doi.org/10.1109/INFOCOM48880.2022.9796848
https://doi.org/10.1145/3642970.3655836
http://dl.acm.org/citation.cfm?id=2772722.2772727
https://www.sciencedirect.com/science/article/pii/S1389128618312957
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://doi.org/10.1145/3098822.3098824
https://arxiv.org/abs/2407.04344
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1145/3230718.3232629
https://doi.org/10.1145/3230718.3232629
https://doi.org/10.1145/3229538.3229542
https://github.com/tbarbette/fastclick/blob/main/elements/standard/minbatch.hh
https://www.usenix.org/conference/nsdi20/presentation/levai
https://www.usenix.org/conference/nsdi20/presentation/levai
http://doi.acm.org/10.1145/3286062.3286081

FAJITA: Stateful Packet Processing at 100 Million pps 14:19

[38] Francisco Pereira, Fernando M.V. Ramos, and Luis Pedrosa. Automatic Parallelization of Software Network Functions.
In 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24), pages 1531–1550, Santa Clara,
CA, April 2024. USENIX Association. https://www.usenix.org/conference/nsdi24/presentation/pereira.

[39] Tom Barbette, Cyril Soldani, and Laurent Mathy. Combined Stateful Classification and Session Splicing for High-
Speed NFV Service Chaining. IEEE/ACM Trans. Netw., 29(6):2560–2573, December 2021. https://doi.org/10.1109/
TNET.2021.3099240.

[40] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing Wan, Lichao
Liu, Zhipeng Ding, Xiongfei Geng, Tao Feng, Feng Ning, Kai Chen, and Chuanxiong Guo. Tiara: A Scalable and
Efficient Hardware Acceleration Architecture for Stateful Layer-4 Load Balancing. In 19th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 22), pages 1345–1358, Renton,WA, April 2022. USENIXAssociation.
https://www.usenix.org/conference/nsdi22/presentation/zeng.

[41] Joao Taveira Araujo, Lorenzo Saino, Lennert Buytenhek, and Raul Landa. Balancing on the Edge: Transport Affinity
without Network State. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), pages
111–124, Renton, WA, April 2018. USENIX Association. http://dl.acm.org/citation.cfm?id=3307441.3307452.

[42] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. Stateless datacenter load-balancing with
Beamer. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), pages 125–139,
Renton, WA, April 2018. USENIX Association. https://www.usenix.org/conference/nsdi18/presentation/olteanu.

[43] Deepak Bansal, Gerald DeGrace, Rishabh Tewari, Michal Zygmunt, James Grantham, Silvano Gai, Mario Baldi,
Krishna Doddapaneni, Arun Selvarajan, Arunkumar Arumugam, Balakrishnan Raman, Avijit Gupta, Sachin Jain,
Deven Jagasia, Evan Langlais, Pranjal Srivastava, Rishiraj Hazarika, Neeraj Motwani, Soumya Tiwari, Stewart Grant,
Ranveer Chandra, and Srikanth Kandula. Disaggregating Stateful Network Functions. In 20th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 23), pages 1469–1487, Boston, MA, April 2023. USENIX
Association. https://www.usenix.org/conference/nsdi23/presentation/bansal.

[44] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Davide Sanvito,
Giuseppe Siracusano, Antonio Capone, Michio Honda, Felipe Huici, and Giuseppe Siracusano. FlowBlaze: Stateful
Packet Processing in Hardware. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI

19), pages 531–548, Boston, MA, February 2019. USENIX Association. https://www.usenix.org/conference/nsdi19/
presentation/pontarelli.

[45] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C. Hoe, Vyas Sekar, and Justine Sherry. Achieving 100Gbps Intrusion
Prevention on a Single Server. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20),
pages 1083–1100. USENIX Association, November 2020. https://www.usenix.org/conference/osdi20/presentation/zhao-
zhipeng.

[46] Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang, Ming Liu, Srinivas Narayana, and Ang Chen. Automated
SmartNIC Offloading Insights for Network Functions. In Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles, SOSP ’21, page 772–787, New York, NY, USA, October 2021. Association for Computing Machinery.
https://doi.org/10.1145/3477132.3483583.

[47] Kaiyuan Zhang, Danyang Zhuo, and Arvind Krishnamurthy. Gallium: Automated Software Middlebox Offloading
to Programmable Switches. In Proceedings of the Annual Conference of the ACM Special Interest Group on Data

Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM
’20, page 283–295, New York, NY, USA, July 2020. Association for Computing Machinery. https://doi.org/10.1145/
3387514.3405869.

[48] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang Han, Nishanth Shyamkumar, Shivani Burad,
André DeHon, and Boon Thau Loo. Flightplan: Dataplane Disaggregation and Placement for P4 Programs. In 18th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 21), pages 571–592. USENIX Association,
April 2021. https://www.usenix.org/conference/nsdi21/presentation/sultana.

[49] Daehyeok Kim, Vyas Sekar, and Srinivasan Seshan. ExoPlane: An Operating System for On-Rack Switch Resource
Augmentation. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pages 1257–1272,
Boston, MA, April 2023. USENIX Association. https://www.usenix.org/conference/nsdi23/presentation/kim-daehyeok.

[50] Hao Li, Yihan Dang, Guangda Sun, Guyue Liu, Danfeng Shan, and Peng Zhang. LemonNFV: Consolidating
Heterogeneous Network Functions at Line Speed. In 20th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 23), pages 1451–1468, Boston, MA, April 2023. USENIX Association. https://www.usenix.org/
conference/nsdi23/presentation/li-hao.

[51] Pedro Celis, Per-Åke Larson, and J. Ian Munro. Robin hood hashing. 26th Annual Symposium on Foundations of

Computer Science (SFCS 1985), pages 281–288, October 1985. https://doi.org/10.1109/SFCS.1985.48.
[52] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch Hashing. In Proceedings of the 22nd International

Symposium on Distributed Computing, DISC ’08, page 350–364, Berlin, Heidelberg, 2008. Springer-Verlag. https:
//doi.org/10.1007/978-3-540-87779-0_24.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

https://www.usenix.org/conference/nsdi24/presentation/pereira
https://doi.org/10.1109/TNET.2021.3099240
https://doi.org/10.1109/TNET.2021.3099240
https://www.usenix.org/conference/nsdi22/presentation/zeng
http://dl.acm.org/citation.cfm?id=3307441.3307452
https://www.usenix.org/conference/nsdi18/presentation/olteanu
https://www.usenix.org/conference/nsdi23/presentation/bansal
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://doi.org/10.1145/3477132.3483583
https://doi.org/10.1145/3387514.3405869
https://doi.org/10.1145/3387514.3405869
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://www.usenix.org/conference/nsdi23/presentation/kim-daehyeok
https://www.usenix.org/conference/nsdi23/presentation/li-hao
https://www.usenix.org/conference/nsdi23/presentation/li-hao
https://doi.org/10.1109/SFCS.1985.48
https://doi.org/10.1007/978-3-540-87779-0_24
https://doi.org/10.1007/978-3-540-87779-0_24

14:20 Hamid Ghasemirahni, et al.

[53] Rina Panigrahy. Efficient Hashing with Lookups in Two Memory Accesses. In Proceedings of the Sixteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, page 830–839, USA, 2005. Society for Industrial and Applied
Mathematics. https://doi.org/10.48550/arXiv.cs/0407023.

[54] Alex D. Breslow, Dong Ping Zhang, Joseph L. Greathouse, Nuwan Jayasena, and Dean M. Tullsen. Horton Tables: Fast
Hash Tables for In-Memory Data-Intensive Computing. In 2016 USENIX Annual Technical Conference (USENIX ATC 16),
pages 281–294, Denver, CO, June 2016. USENIX Association. https://www.usenix.org/conference/atc16/technical-
sessions/presentation/breslow.

[55] Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: Compact and Concurrent MemCache with Dumber
Caching and Smarter Hashing. In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13),
pages 371–384, Lombard, IL, April 2013. USENIX Association. https://www.usenix.org/conference/nsdi13/technical-
sessions/presentation/fan.

[56] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J. Freedman. Algorithmic Improvements for Fast
Concurrent Cuckoo Hashing. In Proceedings of the Ninth European Conference on Computer Systems, EuroSys ’14, New
York, NY, USA, April 2014. Association for Computing Machinery. https://doi.org/10.1145/2592798.2592820.

[57] Sparsh Mittal. A Survey of Recent Prefetching Techniques for Processor Caches. ACM Comput. Surv., 49(2), August
2016. https://doi.org/10.1145/2907071.

[58] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When Prefetching Works, When It Doesn’t, and Why. ACM Trans.

Archit. Code Optim., 9(1), March 2012. https://doi.org/10.1145/2133382.2133384.
[59] Hasan Al Maruf and Mosharaf Chowdhury. Effectively Prefetching Remote Memory with Leap. In 2020 USENIX Annual

Technical Conference (USENIX ATC 20), pages 843–857. USENIX Association, July 2020. https://www.usenix.org/
conference/atc20/presentation/al-maruf.

[60] Han Wang, Longfei Luo, Liang Shi, Changlong Li, Chun Jason Xue, Qingfeng Zhuge, and Edwin H.-M. Sha. SFP: Smart
File-Aware Prefetching for Flash Based Storage Systems. In Proceedings of the 2021 on Great Lakes Symposium on VLSI,
GLSVLSI ’21, page 45–50, New York, NY, USA, June 2021. Association for Computing Machinery.

[61] Sam Ainsworth and Timothy M. Jones. Software Prefetching for Indirect Memory Accesses. In Proceedings of the 2017

International Symposium on Code Generation and Optimization, CGO ’17, page 305–317. IEEE Press, February 2017.
[62] Mustafa Cavus, Resit Sendag, and Joshua J. Yi. Informed Prefetching for Indirect Memory Accesses. ACM Trans. Archit.

Code Optim., 17(1), March 2020. https://doi.org/10.1145/3374216.
[63] Jason Lei and Vishal Shrivastav. Seer: Enabling Future-Aware Online Caching in Networked Systems. In 21st USENIX

Symposium on Networked Systems Design and Implementation (NSDI 24), pages 635–649, Santa Clara, CA, April 2024.
USENIX Association. https://www.usenix.org/conference/nsdi24/presentation/lei.

A SUPPLEMENTARY MATERIAL
A.1 Details of Evaluated NFs
We evaluate the performance of FAJITA for the most common stateful NFs that are widely used in
realistic networks, as done by other works [12, 15, 23, 25, 38]. This section provides more details
about each NF and the per-flow state information used by them to process packets.
Load Balancer (LB). A stateful LB distributes incoming network traffic among multiple servers
while maintaining the state of each flow (i.e., it uses 5-tuple flow identifiers as the key). This ensures
consistent dispatching of packets belonging to the same flow. We utilize a LB as the main NF in our
experiments, as it is widely used by other works to measure different performance metrics. This NF
selects the destination IP address for the first packet of each flow using a specified algorithm (i.e.,
round-robin in our case) from an IP pool and maintains this decision as the flow’s state. Subsequent
packets of the same flow use this state, ensuring continued consistency in traffic distribution.
Access Control List (ACL). A stateful ACL regulates network traffic based on the state of
connections. Unlike traditional ACLs that only consider individual packets, a stateful ACL keeps
track of the state of active connections. This enables more nuanced control by allowing or denying
traffic based on the context of the entire connection rather than isolated packets. To ensure no
packet drop and consequently incorrect measurement deployed ACLs in our experiments simply
accept all packets and store only an integer value as the state of a flow (i.e., it uses 5-tuple flow
identifiers as the key).

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

https://doi.org/10.48550/arXiv.cs/0407023
https://www.usenix.org/conference/atc16/technical-sessions/presentation/breslow
https://www.usenix.org/conference/atc16/technical-sessions/presentation/breslow
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://doi.org/10.1145/2592798.2592820
https://doi.org/10.1145/2907071
https://doi.org/10.1145/2133382.2133384
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://doi.org/10.1145/3374216
https://www.usenix.org/conference/nsdi24/presentation/lei

FAJITA: Stateful Packet Processing at 100 Million pps 14:21

Flow Statistics Counter (FSC). A FSC is a stateful NF that monitors and records data for each
individual flow, including information about the number of packets, bytes, or other relevant metrics
associated with each flow (i.e., it uses 5-tuple flow identifiers as the key).
Source IP Statistics Counter. This NF acts similarly to the FSC but keeps the data per source IP
address instead of a 5-tuple flow identifier. We use this NF as a sample application that has a flow
definition with a coarse granularity. Additionally, this NF could potentially cause false sharing, as
multiple cores share and update a state for each source IP address.
Policer. This NF is designed to restrict the download rate for individual servers and keeps state per
destination IP address. Similar to the Source IP Statistics Counter, this NF may impose an overhead
on the system due to having shared states among cores.
Port Scan Detector (PSD). This is a security NF that identifies port scan activities. To do so, a PSDs
typically store the list of destination ports accessed per source IP address (or source and destination
IP addresses). Source IPs with a high number of accessed destination ports are considered potentially
malicious.
Synthetic NF. To mimic the behavior of stateful NFs advanced state data structures, we developed
a synthetic NF with a configurable number of memory accesses per packet. More specifically, the
NF stores an array of pointers as the state with a provided length (i.e., number of memory accesses
per packet). To process a packet the NF increments the value of each state entry with no further
processing overhead.

A.2 What is the Impact of Each of FAJITA’s Optimizations?

 0

 30

 60

 90

 120

FastClick FastClick
+BR

FAJITA
(w/o Prefetch)

FAJITA
(w/ Prefetch)

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

12.40

59.48
68.91

110.94

Fig. 16. FAJITA is most effective when

utilizing an optimized processing pipeline

with accelerated state retrieval (i.e., FAJITA
w/ Prefetch); it runs a FSC with eight cores.

Section 4.1.1 showed the benefits of FAJITA’s third
optimization (i.e., mitigating synchronization overhead).
This section aims to measure the individual contribution
of FAJITA’s other optimizations (i.e., optimized pipeline
and accelerated state retrieval) to performance gains.
Figure 16 shows the throughput of a FSC while
processing 64-B packets in four different scenarios: (𝑖)
the first column (FastClick) emphasizes the overheads
of transmission when sending small per-flow batches,
(𝑖𝑖) the second column (FastClick+BR) represents the
selected baseline for FastClick where transmission
overhead is eliminated by re-batching packets at the
end of the processing pipeline, (𝑖𝑖𝑖) the third column (FAJITA w/o Prefetch) shows the impact of
FAJITA’s optimized processing pipeline that avoids creating per-flow mini-batches while keeping
pointers to the aggregated state block per flow, and (𝑖𝑣) the last column (FAJITA w/ Prefetch)
demonstrates the entire benefits of FAJITA, which combines accelerated state retrieval with an
optimized processing pipeline. This result shows that solely relying on an optimized processing
pipeline can help FAJITA achieve 5.5× and ~15% higher throughput compared to FastClick without
and with BR, respectively. Note that unlike BR, FAJITA does not introduce any latency overheads
(see §4.1). Moreover, utilizing accelerated state retrieval further increases FAJITA’s improvement by
~60%, showing the importance of employing both FAJITA’s optimizations to utilize the underlying
hardware more efficiently. Deploying NFs with advanced state data structures further increases the
gain achieved by FAJITA (see AppendixA.3).

A.3 Is FAJITA Beneficial for Advanced Data Structures?
Asmentioned in Section 3, FAJITA’s second principle relies on software prefetching with proactively
loading the state for each NF right before processing a packet. Additionally, FAJITA provides a

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

14:22 Hamid Ghasemirahni, et al.

customizable function for developers to tailor the prefetching process to suit the specific data
structures used by an NF.

 0

 20

 40

 60

 80

 100

 120

0 1 2 3 4

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Number of NFs

0.00%

5.32%

8.54%
10.20%

13.87%

w/o per NF prefetching

w/ per NF prefetching

Fig. 17. Benefits of prefetching non-

contiguous states increasewith a higher

number of indirect accesses - in this

case, induced by chains of NFs.

To show the benefits of this optimization, we deploy a chain
of synthetic stateful NFs, where each NF performs only one
indirect access to a memory location. This emulates scenarios
where multiple stateful NFs with advanced state data-
structure are deployed on the server. Figure 17 demonstrates
the throughput of FAJITA when a variable number of
synthetic NFs run on the server with and without utilizing
the provided function for prefetching state data with indirect
accesses. The server utilizes 8 CPU cores and receives 64-B
packets. As shown in the figure, increasing the number of
NFs causes a noticeable performance reduction due to more
processing and memory accesses. However, utilizing the
prefetching function leads to more speedup (see the numbers
on top of each bar) as the system can prefetch required data
in advance and reduce the data retrieval overhead.

A.4 Auxiliary HT size impact.

 0

 0.2

 0.4

 0.6

 0.8

 16 64 256 1024 4096

L
L

C
 M

is
s
e
s
 /
 P

a
c
k
e
t

Total Number of Flows (k)

FAJITA w/o auxiliary HT
FAJITA w/ auxiliary HT

Fig. 18. Using per-core auxiliary HTs

in FAJITA leads to fewer LLC misses

when running a chain of 3 NFs with

various flow granularities. Note that

x-axis is logarithmic.

As discussed in §3, FAJITA introduces a per-core auxiliary HT
in front of a stateful NF chain with various flow definition.
These tables need to store 8 Bytes pointers per NF in the
chain and ~15 Bytes of metadata for each entry. This results
in allocating a few hundred MB of memory on the commodity
server and increased memory requirement of FAJITA in
compare to running the chain without auxiliary HTs. We
argue that, although these tables elevate memory footprint
of the packet processing framework, they lead to less cache
footprint and lower LLC misses per packet during the packet
processing. This is because of enabling system to bypass
multiple expensive hash table accesses. Figure 7 already shows
the benefit of auxiliary HTs in terms of throughput. Figure 18
also demonstrates the average LLC misses per packet with the
same setup as §4.1.1.

Proc. ACM Netw., Vol. 2, No. CoNEXT3, Article 14. Publication date: September 2024.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Principle 1: Minimize Memory Accesses
	2.2 Principle 2: Perform Batch Processing at Every Stage
	2.3 Principle 3: Minimize Shared Memory

	3 FAJITA: Stateful Packet Processing at 100 Million pps
	3.1 Implementation

	4 FAJITA Evaluation
	4.1 Does FAJITA Improve Performance?
	4.1.1 Auxiliary HT minimizes the shared memory overheads.

	4.2 Does FAJITA Scale?
	4.3 Is RSS Sufficient for FAJITA?
	4.4 How Do Different Workloads Affect the Level of Performance Improvement?
	4.5 Does FAJITA Change the Impact of Statefulness?

	5 Frequently Asked Questions
	6 Related Work
	7 Conclusions
	References
	A Supplementary Material
	A.1 Details of Evaluated NFs
	A.2 What is the Impact of Each of FAJITA's Optimizations?
	A.3 Is FAJITA Beneficial for Advanced Data Structures?
	A.4 Auxiliary HT size impact.

