
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017 779

Traffic Engineering With Equal-Cost-MultiPath:
An Algorithmic Perspective

Marco Chiesa, Guy Kindler, and Michael Schapira

Abstract— To efficiently exploit the network resources
operators, do traffic engineering (TE), i.e., adapt the routing
of traffic to the prevailing demands. TE in large IP networks
typically relies on configuring static link weights and splitting
traffic between the resulting shortest paths via the Equal-Cost-
MultiPath (ECMP) mechanism. Yet, despite its vast popularity,
crucial operational aspects of TE via ECMP are still little-
understood from an algorithmic viewpoint. We embark upon a
systematic algorithmic study of TE with ECMP. We consider
the standard model of TE with ECMP and prove that, in
general, even approximating the optimal link-weight configuration
for ECMP within any constant ratio is an intractable feat,
settling a long-standing open question. We establish, in contrast,
that ECMP can provably achieve optimal traffic flow for the
important category of Clos datacenter networks. We last consider
a well-documented shortcoming of ECMP: suboptimal routing of
large (“elephant”) flows. We present algorithms for scheduling
“elephant” flows on top of ECMP (as in, e.g., Hedera) with
provable approximation guarantees. Our results complement and
shed new light on past experimental and empirical studies of the
performance of TE with ECMP.

Index Terms— Traffic engineering, multicommodity flow,
approximation algorithms.

I. INTRODUCTION

THE rapid growth of online services (from video streaming
to 3D games and virtual worlds) is placing tremendous

demands on the underlying networks. To make efficient use
of network resources, adapt to network conditions, and satisfy
user demands, network operators do traffic engineering (TE),
i.e., tune routing-protocol parameters to control how traffic
is routed across the network. Our focus in this paper is on
the prevalent mechanism for engineering the flow of traffic
within a single administrative domain (e.g., company, uni-
versity campus, Internet Service Provider, and datacenter):
TE with Equal-Cost-MultiPath (ECMP) [2] via static
link-weight configuration.

Most large IP networks run Interior Gateway Protocols,
e.g., Open Shortest Path First (OSPF) [3], to compute
all-pairs shortest-paths between routers based on configurable

Manuscript received February 15, 2015; revised May 18, 2016;
accepted August 30, 2016; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor J. Wang. Date of publication October 11, 2016; date
of current version April 14, 2017. This work was supported in part by the
Israeli Center for Research Excellence in Algorithms (I-CORE) and in part
by the Israel Science Foundation under Grant 420/12.

M. Chiesa is with the Université catholique de Louvain,
1348 Ottignies-Louvain-la-Neuve, Belgium (e-mail: chiesa@dia.uniroma3.it).

G. Kindler and M. Schapira are with The Hebrew University of Jerusalem,
Jerusalem 9190401, Israel.

Digital Object Identifier 10.1109/TNET.2016.2614247

Fig. 1. An illustration of Equal-Cost-MultiPath routing: 4 TCP connections,
called “flows 1-4”, originate at (source) router s and are destined for (target)
router t. All link weights are 1. Observe that (s, b, c, t), (s, b, e, t) and
(s, d, e, t) are (all) the induced shortest-paths from s to t. Each router now
uses a static hash function on packet headers to map every connection to an
outgoing link on a shortest-path to its destination, e.g., router s can map each
of the flows 1-4 to the link (s, b) or the link (s, d) according to its hash
function. The figure describes a possible mapping of flows to outgoing links.

static link weights (where a link’s weight specifies its distance
in the shortest-path computation). The ECMP feature was
introduced to exploit shortest-path diversity by enabling the
“split” of traffic between multiple shortest-paths via per-
flow static hashing [4]. See Figure 1 for an illustration of
shortest-path routing and ECMP traffic splitting on a simple
network topology. Hence, today’s TE often constrains the
flow of traffic in two important respects: (1) traffic from a
source to a destination in the network can only flow along
the shortest paths between them (for the given configuration
of link weights); and (2) traffic can only be split between
multiple shortest paths (if multiple shortest paths exist) in a
very specific manner (as illustrated in Figure 1).

Despite many proposals for alternative TE protocols and
techniques, “traditional” TE with ECMP remains the prevalent
mechanism for engineering the (intradomain) flow of traffic
in today’s Internet because, alongside its limitations, TE with
ECMP has many advantages over other, more sophisticated
schemes: stable and predictable paths, relatively low proto-
col overhead, implementation in existing hardware, simple
configuration language, scalability, a built-in failure recovery
mechanism, and more. Still, while ECMP is the subject
of much empirical and experimental study (e.g., for ISP
networks [5] and for datacenter networks [6]), even crucial
operational aspects of TE with ECMP are little-understood
from an algorithmic perspective: Can the configuration of
link weights be done in a provably good manner? What
conditions on network topologies lead to desirable TE guar-
antees? Can algorithmic insights aid in “fixing” ECMP’s doc-
umented shortcomings, e.g., the suboptimal routing of large
(“elephant”) flows? We embark on a systematic algorithmic

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

780 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

study of TE with ECMP. Our main contributions are discussed
below.

Optimizing Link-Weight Configuration: In practice, link
weight configuration often relies on heuristics, such as setting
link weights to be inversely proportional to capacity [7]. While
reasonable, these heuristics come with no guarantees. Can
link-weight configuration be executed in a provably good
manner? We consider the standard “splittable-flow model”
of TE with ECMP, put forth by Fortz and Thorup [8]–[10],
and the standard objective of minimizing the maximum link
utilization. We settle a long-standing open question by prov-
ing a devastating impossibility result: No computationally-
efficient algorithm can approximate the optimal link-weight
configuration within any constant ratio. We show that this
inapproximability result extends to other metrics of interest,
e.g., maximizing total throughput and minimizing the sum of
(exponentially-increasing) link costs (introduced in [8]). Our
proof utilizes a new (“graph-power”) technique for amplifying
an inapproximability factor. We believe that this technique
(somewhat inspired by the “diamond graph” in [11]) is of
independent interest and may prove useful in other TE (and
flow optimization, in general) contexts.

Optimizing ECMP Performance on Specific (Datacenter)
Network Topologies: The above negative result establishes that
without imposing any restrictions on the network topology,
TE with ECMP comes with no reasonable (provable) guar-
antees whatsoever. What about specific network topologies of
interest? What conditions on network topology imply good
guarantees? We take the first steps in this research direction.
We consider two recent proposals for datacenter network
topologies: folded Clos networks (VL2 [6]) and hypercubes
(BCube [12], MDCube [13],). Our main positive result estab-
lishes that in the splittable-flow model, TE with ECMP is
optimal for the important category of folded Clos networks.
We show, in contrast, that for hypercubes, computing the
optimal link weights for ECMP is NP-hard.

Our optimality result for folded Clos networks supports
past experimental studied of ECMP in environments with
fine-grained traffic splitting. Reference [1] shows that ECMP
routing of small (“mice”) flows in Clos networks leads to good
network performance. To avoid TCP packet reordering, ECMP
routing splits traffic across multiple paths at an (IP-)flow-level
granularity, that is, packets belonging to the same IP flow
traverse the same path. Reference [14] advocates replacing
today’s ECMP traffic splitting scheme with packet-level traffic
splitting (i.e., allowing the “spraying” of packets belonging to
the same flow across multiple paths). Reference [14] shows,
via extensive simulations, that “ECMP-like” traffic splitting
at packet-level granularity leads to significantly better load-
balancing of traffic in folded Clos networks. Our optimal-
ity result provides a strong theoretical justification for this
claim.

Optimizing the Routing of Elephant Flows: As explained
above, ECMP splits traffic across multiple paths at
an (IP-)flow-level granularity. Consequently, a key limitation
of ECMP is that large, long-lived (“elephant”) flows traversing
a router can be mapped to the same output port. Such
“collisions” can cause load imbalances across multiple paths

and network bottlenecks, resulting in substantial bandwidth
losses [1], [14]. Beyond transitioning to ECMP traffic splitting
at packet-level, researchers have also examined other possible
approaches to alleviating this. Recent studies, e.g., Hedera [1]
and DevoFlow [15], call for dynamically scheduling elephant
flows in datacenter (folded Clos) networks so as to minimize
traffic imbalances (while still routing mice flows with ECMP).
We now focus on the unsplittable-flow model, which captures
the requirement that all packets in a flow (be it long-lived or
short-lived) traverse the same path, and investigate the approx-
imability of elephant flow routing. We show that this task is
intractable and we devise algorithms for approximating the
(unattainable) optimum. We discuss the connections between
our algorithmic results and past experimental studies along
these lines.

Organization: We present the standard ECMP routing
model in Section II. Our inapproximability result for opti-
mizing link-weight configuration is presented in Section III.
We discuss our results for TE with ECMP for specific (data-
center) network topologies (folded Clos networks and hyper-
cubes) in Section VI. Our results for scheduling elephant flows
in folded Clos networks appear in Section VII. We perform
an evaluation of our scheduling algorithms for elephant flows
in Section VIII. We conclude and present directions for future
research in Section X. Due to space constraints many proofs
are deferred to the full version of the paper [16].

II. EMCP ROUTING MODEL

We now present the standard model of TE with ECMP
from [10]. We refer the reader to [8]–[10] for a more thorough
explanation of the model and its underlying motivations.
We shall revisit some of the premises of this model
in Section VII.

Network and Traffic Demands: The network is modeled as
an undirected graph G = (V, E), where each edge e ∈ E has
fixed capacity ce. Vertices in V represent routers and edges
(links) in E represent physical communication links between
routers. We are given a |V |× |V | demand matrix D such that,
for each pair s, t ∈ V , the entry Dst specifies the volume of
traffic, in terms of units of flow, that (source) vertex s sends
to (target) vertex t.

Flow Assignments: A flow assignment is a mapping f :
V × V × E → R

+ \ {0}. f(s, t, e) represents the amount
of flow from source s to target t traversing edge e. Let
fe = Σs,t∈V f(s, t, e), that is, fe denotes the total amount of
flow traversing edge e . We define the congestion of an edge
e as fe

ce
. We restrict out attention (unless stated otherwise)

to flow assignments that obey two conventional constraints:
(1) flow conservation: ∀v ∈ V , ∀s, t ∈ V such that v �= s
and v �= t, Σe∈Evf(s, t, e) = 0, where Ev is the set of v’s
incident edges in E; (2) demand satisfaction: for all s, t ∈ V
Σe∈Osf(s, t, e) = Σe∈Otf(s, t, e) = Ds,t. (Observe that in
some scenarios a flow satisfying the two above conditions
must exceed the capacity of some link, i.e., fe > ce for some
edge e).

Link-Weight Configurations and Routing: A link-weight
configuration is a mapping from edges to nonnegative
“weights” w : E → R

+ \ {0}. Every such link-weight

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

CHIESA et al.: TE WITH ECMP: AN ALGORITHMIC PERSPECTIVE 781

configuration w induces the unique flow assignment that
adheres to the following two conditions:

• Shortest-path routing. Link weights in w induce shortest
paths between all pairs of vertices, where a path’s length
is simply the sum of its link weights. All units of flow
sent from source s to target t must be routes along the
resulting shortest-paths between them. We next explain
how traffic is split between multiple shortest paths.

• Equal splitting. All units of flow traversing a vertex v en
route to a given target vertex t are equally split across all
of v’s outgoing links on shortest-paths from v to target t.

Optimizing Link Weight Configuration: We study the opti-
mization of link-weight configuration for ECMP routing.
We consider 3 optimization goals:

• MIN-ECMP-CONGESTION (MEC). A natural and well-
studied optimization goal is to minimize the maximum
link utilization, that is, to engineer a flow assignment f
(via link-weight configuration) so that maxe∈E

fe

ce
is

minimized.
• MIN-SUM-COST. Another optimization goal that has

been studied in the context of TE with ECMP is
MIN-SUM-COST [8]–[10], [17]: minimizing the sum of
edge-costs under a given flow Σeφ(fe

ce
), where φ is an

exponentially-increasing cost function, e.g., φ(x) = 2x.
• MAX-ECMP-FLOW (MEF). MEF can be regarded as

the straightforward generalization of classical max-flow
objective to the multiple sources / multiple targets
(i.e., multicommodity flow) setting. Here the goal is to
send as much traffic through the network while (i) not
exceeding the demands in D (i.e., possibly violating
“demand satisfaction”, as defined above) and (ii) not
exceeding the link capacities.

Approximating the Optimum: While in some scenarios
computing the optimal solution with respect to the above
optimization goals is tractable, in other scenarios this task
is NP-hard. We therefore also explore the approximability
of these goals. We use the following standard terminology.
Let A be an algorithm for a minimization problem P . For
every instance I of P , let A(I) denote the value of A’s
outcome for I and OPT (I) denote the value of the optimal
solution for I . A is a polynomial-time α-approximation algo-
rithm for P for α ≥ 1 if A runs in polynomial time and
for any instance I of P , A(I) ≤ α · OPT (I). Similarly an
algorithm A is a polynomial-time α-approximation algorithm
for a maximization problem P , for α ≥ 1, if A runs in
polynomial time and, for any instance I of P , A(I) ≥ OPT (I)

α .

III. TE WITH ECMP IS INAPPROXIMABLE!

We settle a long-standing question by showing that
optimizing link-weight configuration for ECMP is not only
NP-hard but cannot, in fact, be approximated within any
“reasonable” factor (unless P=NP) with respect to all
3 optimization goals discussed in Section II: MIN-ECMP-
CONGESTION, MIN-SUM-COST, and MAX-ECMP-FLOW.
Remarkably, these inapproximability results hold even when
the demand matrix has a single nonzero entry, i.e., when only
a single router aims to send traffic to another router. Hence, in

general, configuring link-weights for ECMP cannot be done
in a provably good manner.

Theorem 1: No computationally-efficient algorithm can
approximate the optimum with respect to MIN-ECMP-
CONGESTION, MIN-SUM-COST or MAX-ECMP-FLOW,
within any constant factor α ≥ 1 unless P = NP , even when
the demand matrix has a single nonzero entry.

The remainder of the section provides a proof of Theorem 1
for the MIN-ECMP-CONGESTION, MAX-ECMP-FLOW, and
MIN-SUM-COST objectives.

We henceforth focus on the scenario that the demand
matrix has a single nonzero entry. Below, we discuss the
three main ingredients of the proof of Theorem 1: (1) a new
graph-theoretic problem called “MAX-ECMP-DAG”, which
we prove is inapproximable within a small constant factor
(Section III-A); (2) amplifying this inapproximability result
for MAX-ECMP-DAG via a new technique to establish that
MAX-ECMP-DAG is not approximable within any constant
factor (Section III-B); and (3) showing that our inapprox-
imability result for MAX-ECMP-DAG implies similar results
for both MIN-ECMP-CONGESTION and MAX-ECMP-FLOW

(Section III-C).

A. MAX-ECMP-DAG

MAX-ECMP-DAG: We present the following graph-
theoretic problem called “MAX-ECMP-DAG” (MED).
In MAX-ECMP-DAG, the input is a capacitated directed
acyclic graph (DAG) H and a single source-target pair of
vertices (s, t) in H . We associate with every sub-DAG H̄
of H that contains s and t a flow assignment fH̄ as follows.
Given H̄ , the flow assignment fH̄ is the max-flow from
s to t in H̄ subject to the constraint that every vertex in
H̄ split outgoing flow equally between all of its outgoing
edges in H̄ . The objective in MAX-ECMP-DAG is to find
the sub-DAG of H for which the induced flow is maximized,
i.e., maxH̄ |fH̄ |.

Inapproximability Result for MAX-ECMP-DAG: We prove
that MAX-ECMP-DAG is inapproximable within a (small)
constant factor via a reduction from a hardness result for
MIN-ECMP-CONGESTION in [10]. We shall later introduce in
Section III-B a new operator that will be used to amplify this
inapproximability ratio.

Theorem 2: Given a MAX-ECMP-DAG instance I , distin-
guishing between the following two scenarios is NP-hard:

• OPT (I) = 1
• OPT (I) = 2

3
where OPT (I) is the value of the optimal solution for I .

Observe that Theorem 2 implies that MAX-ECMP-DAG
cannot be approximated within a factor of 3

2 (unless P=NP).
To prove it, we first show that the MIN-ECMP-

CONGESTION problem remains hard even if we have a single
source-target pair case (i.e., one single nonzero entry in
the demand matrix D). In this case, we observe that an
optimal solution for a MIN-ECMP-CONGESTION instance is
also an optimal solution for a MAX-ECMP-FLOW instance
and vice versa. We then show that every solution for a
MAX-ECMP-DAG instance can be translated into an “equiv-
alent” solution for a MAX-ECMP-FLOW instance (i.e., a link

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

782 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

weight assignment) that uses an undirected copy of the original
graph. We start from the following theorem, which has been
proved by Fortz and Thorup [10].

Theorem 3: Given a MIN-ECMP-CONGESTION instance I ,
with multiple unit flow demands in D, distinguishing between
the following two scenarios is NP-Hard:

• OPTMEC(I) = 1
• OPTMEC(I) = 3

2
even when each source vertex sends the same amount of traffic
to a unique target vertex and each target vertex receives the
same amount of traffic from a unique source vertex.

Based on Theorem 3, we first prove that the same result
holds even in the more restrictive case where there only exists
a single source-target pair.

Lemma 4: Given a MIN-ECMP-CONGESTION instance I
with a single source-target unit flow demand, distinguishing
between the following two scenarios is NP-Hard:

• OPTMEC(I) = 1.
• OPTMEC(I) = 3

2 .
Proof: Let I = (G, D) be a MEC instance as defined in

Theorem 3. Let s1, . . . , sk (t1, . . . , tk) be the set of source
(target) vertices and f be the amount of flow that is sent from
a source vertex to a target vertex. For sake of simplicity, we
assume that k is a power of 2. Create a copy G′ of G and
D′ of D. Add a new source vertex s into G′ and connect
it to all vertices s1, . . . , sk with a binary tree rooted at s.
Add a new target vertex t and connect it with an edge to
all vertices t1, . . . , tk. Let Ds,t = 1, Dx,y = 0 for x �= s
and y �= t, and set the capacity of each edge of the binary
tree incident to a source (target) vertex si (ti) to 1

f ·k and all
the remaining edges of both binary trees to infinite. We then
divide each edge capacity by a factor of f · k. We now show
that OPTMEC((G, D)) = OPTMEC((G′, D′)). It is easy to
see that OPTMEC((G, D)) ≥ OPTMEC((G′, D′)). In fact, if
(i) the unit flow demand Ds,t is split among every edge in the
binary tree that join s to all vertices s1, . . . , sk, (ii) each flow
from si is routed as in the optimal solution for I , and (iii) each
flow is routed from each ti directly to t, then the value of this
solution will be equal to OPTMEC((G, D)). By observing
that an unequal splitting through the binary tree from s to
vertices s1, . . . , sk causes a congestion of 2 on the edge that
connects a leaf of the binary tree to the corresponding source
vertex, our lemma easily derives by Theorem 3.

We denote by I = (G, s, t) an instance of both
MAX-ECMP-FLOW and MIN-ECMP-CONGESTION with a
single source-target unit flow demand from a vertex s to a
vertex t. We restrict our attention to those instances that have
only optimal solutions with at least an edge with congestion
at least 1, i.e., OPTMEC(I) ≥ 1.

Lemma 5: A link weight assignment for a graph G is
optimal for an instance (G, s, t) of MIN-ECMP-CONGESTION

if and only if it is optimal for an instance (G, s, t) of
MAX-ECMP-FLOW.

Proof: It is easy to see that, given an optimal solution
for an instance I = (G, s, t) of MIN-ECMP-CONGESTION, by
scaling the amount of flow that is sent from s to t by a factor
of 1

OPTMEC(I) , each edge will have congestion at most 1
and the amount of flow sent from s to t is not greater

than 1, since OPTMEC ≥ 1. Hence, OPTMEF (I) ≥
1

OPTMEC(I) . Vice versa, given an optimal solution for an
instance I = (G, s, t) of MAX-ECMP-FLOW, by scaling the
amount of flow sent from s to t by a factor of 1

OPTMEF (I)
,

each edge will have congestion at most 1
OPTMEF (I)

, since

at least an edge in the optimal solution has congestion 1,
and a unit of flow will be routed from s to t. Hence,
OPTMEC(I) ≤ 1

OPTMEF (I) .

Corollary 6: Given a MAX-ECMP-FLOW instance I with a
single source-target pair, distinguishing between the following
two scenarios is NP-Hard:

• OPTMEF (I) = 1
• OPTMEF (I) = 2

3

Proof: It easily follows by Lemma 5 and Theorem 4 by
observing that OPTMEF (I) = 1

OPTMEC(I) .
We now show that every solution for a MAX-ECMP-DAG

instance can be translated in a link weight assignment that is
associated with the same flow assignment on the graph. Hence,
finding an optimal (s, t)-DAG is equivalent to computing an
optimal link weight assignment, which allows us to present
our amplification operator in the next section in a simpler way.
We now introduce some useful notations. We say that a flow
assignment f on a graph G is realized by a weight assignment
w if by setting the link weights of G as in w, flows are routed
according to f . Given a link weight assignment w, let B(w)
denote the oriented subgraph of G that contains the edges that
are traversed by a flow. These edges are oriented according
to the direction of the traversing flow. Since flows are routed
according to the shortest-path criterium, B(w) is a directed
acyclic graph (DAG) with a single source s and a single
sink t.

Lemma 7: For any arbitrary sub-DAG A with a single
source s and a single sink t of a graph G, there exists a link
weight assignment w such that B(w) is equal to A.

Proof: To compute a link weight assignment w that induces
A as its shortest-path DAG, it is sufficient to set link weights
as follows. Go over the vertices according to the topological
order induced by A, (v1, . . . , vn), where v1 = t and vn = s
and, for each vertex vi, set the weights of each outgoing link
l in A of vertex vi so that l be on some shortest path from vi

to t. After going over all vertices, set the weights of all links
not in A to be sufficiently high so as not to be on any shortest
path. Observe that this link weight assignment indeed induces
A as the resulting shortest-path DAG.

This theorem implies that for any instance I = (G, s, t)
of MAX-ECMP-FLOW with OPT (I) ≤ 1, we have that
OPTMF ((G, s, t)) = OPT ((G, s, t)). Hence, combining this
with Lemma 7, we obtain the following constant inapproxima-
bility result for MAX-ECMP-DAG.

Theorem 2. Given a MAX-ECMP-DAG instance I , distin-
guishing between the following two scenarios is NP-hard:

• OPT (I) = 1
• OPT (I) = 2

3

where OPT (I) is the value of the optimal solution for I .

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

CHIESA et al.: TE WITH ECMP: AN ALGORITHMIC PERSPECTIVE 783

Fig. 2. Graph G0.

B. Amplifying the Inapproximability Gap

We can now leverage Theorem 2 to prove that
that MAX-ECMP-DAG is not approximable within any con-
stant factor.

Amplifying the Inapproximability Gap (A New Technique):
Our proof relies on a new technique for amplifying an
inapproximability gap. Roughly speaking, we show how to
create, given an instance I0 of MAX-ECMP-DAG, a new,
polynomially-bigger, instance I1 of MAX-ECMP-DAG such
that OPT (I1) = (OPT (I0))2. Observe that as distinguishing
between the scenario that OPT (I0) = 1 and the scenario that
OPT (I0) = 2

3 is NP-hard, distinguishing between the scenario
that OPT (I1) = 1 and the scenario that OPT (I1) = (2

3)2

is also NP-hard. By applying this idea multiple times the
inapproximability gap can be further amplified to an arbitrary
(constant) factor.

The ⊗ Operator (Intuition): We now sketch the key tool
used in our proof technique. We define the “⊗ operator”
that, given two MAX-ECMP-DAG instances, constructs a new
MAX-ECMP-DAG instance. Before formally defining the ⊗
operator, we illustrate its use via the example in Figure 2.
Consider the MAX-ECMP-DAG instance I0 in Figure 2.
The numbers in black are edge capacities and the orange
arrows indicate the direction of the edges. Observe that the
optimal solution for I0 is the sub-DAG that contains the edges
(s, a), (a, b), (b, t), and (a, t) and that the value of this solution
is 9. Specifically, the optimal solution routes 9 units of flow
through (s, a), which are then equally split between(a, b) and
(a, t), and the 4.5 units of flow entering vertex b are then sent
directly to t. Now, consider the instance I1 of MAX-ECMP-
DAG, shown in Fig. 4, that is obtained from I0 as follows.
Let G0 be the network graph in I0. We replace each edge
(u, v) in G0 with an exact copy of G0. We connect vertex u
to the source vertex in this copy of G0 and vertex v to the
target vertex. The capacity of each edge in this copy of G0 is
set to be its original capacity in G0 multiplied by the capacity
of (u, v). The capacities of the edges connecting vertices u
and v to this copy of G0 are set to be ∞.

We argue that the optimal solution for I1, OPT (I1)
is f∗ = 92 = 81. We now provide some intuition for
this claim. Let G1 be the network graph in I1. Consider
G(u,v), the copy of G0 that was used in the construction
of I1 to replace the edge (u, v) in G0. Specifically,
consider G(a,b), with V (G(a,b) = {sa,b, aa,b, ba,b, ta,b, }
and E(G(a,b)) = {(s(a,b), a(a,b)), (s(a,b), b(a,b)),
(a(a,b), b(a,b)), (a(a,b), t(a,b)), (b(a,b), t(a,b))}. Observe that the
optimal sub-DAG of G(a,b) in terms of maximizing the flow

Fig. 3. Abstraction of G1.

Fig. 4. Graph G1.

from s(a,b) to t(a,b) is precisely as in the optimal solution for
I0. Observe also that the value of the optimal solution within
G(a,b) is 9 × 6, that is, f∗ multiplied by the capacity of the
edge (a, b) in G0. Similarly, every subgraph G(u,v) can route
a flow of f∗ × cG0((u, v)), where cG0((u, v)) is the capacity
of the edge (u, v) in G0. Hence, the network graph G1 can
be abstracted as in Figure 3 (replacing each copy of G0

by a single edge with the appropriate capacity). A simple
argument shows that the optimal solution in this instance of
MAX-ECMP-DAG has value (f∗)2, the value of the optimal
solution in I0 multiplied by a scaling factor of f∗.

The ⊗ Operator (Formal Definition): Let I1 and I2 be
two MAX-ECMP-DAG instances. We now define the oper-
ation I1 ⊗ I2. Let G1 and G2 be the network graphs in
I1 and I2, respectively. I = I1 ⊗ I2 is an instance of
MAX-ECMP-DAG with network graph G constructed
as follows. We create, for every edge e ∈ E(G1), a copy
of G2, Ge. Let se and te denote the source and target vertices
in Ge, respectively. The set of vertices in G consists of the
vertices in V (G1) and also of the vertices in all V (Ge)’s,
i.e., V (G) = V (G1)

⋃
e∈E(G1)

V (Ge). The set of edges in G
contains all the edges in the different E(Ge)’s, and also the
edges (u, se) and (te, v) for every edge e = (u, v) ∈ E(G1),
i.e., E(G) =

⋃
e=(u,v)∈E(G1)

({(u, se)(te, v)} ∪ E(Ge)). The
capacity of every edge in Ge is set to be the capacity of the

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

784 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

corresponding edge in G2 multiplied by the capacity of e in I1.
The capacity of every edge of the form (u, se) or (te, v) is set
to ∞.

Gap Amplification via the ⊗ Operator: We prove a crucial
property of the ⊗ operator: applying the ⊗ operator to
an instance I of MAX-ECMP-DAG k times increases the
value of the optimal solution from OPT (I) in the origi-
nal instance I to (OPT (I))k in the resulting new instance
of MAX-ECMP-DAG.

Lemma 8: Let I be an instance of MAX-ECMP-DAG.
OPT (⊗kI) = (OPT (I))k for any integer k > 0.

Proof: Let I = ⊗0I be a MAX-ECMP-DAG instance.
Recall that I is a DAG with a single source s and sink t.
We prove this lemma by induction on k. Let H̄0 be an optimal
solution for ⊗0I , that is, a sub-DAG of I .

In the base case k = 0, we have that OPT (⊗0I) =
OPT (I)1, which is true since ⊗0I = I .

In the inductive case k > 0, let Ik = ⊗kI and Ik+1 =
⊗k+1I . Let H̄k be an optimal solution for Ik. We prove that
there exists a sub-DAG H̄k+1 of Ik+1 such that OPT (Ik+1) =
OPT (I)k+2. First, we prove that OPT (Ik+1) ≥ OPT (I)k+2.
Recall that, each edge e of Ik with capacity cIk

(e) �= ∞
is replaced in Ik+1 by a DAG He, where the capacity of
each edge of He is multiplied by a factor cIk

(e). Consider
a solution H̄k+1 of Ik+1 constructed as follows. For each
vertex of Ik+1 that is not contained in any graph He (i.e, each
vertex in common with Ik), we split the traffic according to
the optimal solution in Ik, i.e., for each edge (x, y) ∈ E(H̄k)
add (x, s(x,y)) and (t(x,y), y) into H̄k+1. Moreover,for each
subgraph He, with e ∈ E(Ik), we split traffic as H̄0 does
in I . Namely, for each subgraph He, where e ∈ E(H̄k),
for each edge (x, y) ∈ E(H̄0) add (we, ye) into E(H̄i+1).
Observe that we can route through He a flow that is OPT (I0)
times larger than cIk

(e). Therefore, the maximum flow in Ik+1

is OPT (I0) · OPT (Ik) = OPT (I0 =) · OPT (I0)k+1 =
OPT (I0)k+2, which implies OPT (Ik+1) ≥ OPT (I)k+2.

Now, we prove that OPT (Ik+1) ≤ OPT (I)k+2. Suppose,
by contradiction, that there exists a sub-DAG H̄k+1 of Ik+1

such that fH̄k+1
> OPT (I)k+2. Construct a sub-DAG H̄k of

Ik as follows. For each directed edge (v, u(x,y)) ∈ E(H̄k+1),
where v is a vertex of Ik+1 in common with Ik and u(x,y)

is the source or target vertex of any subgraph H(x,y), add
(v, y) into E(H̄k) if y �= v, otherwise add (v, x). Since each
edge e of Ik can route a flow OPT (I) times smaller than
its corresponding subgraph He of Ik+1, we have that the

maximum flow through H̄k is at least
fH̄k+1

OPT (I) > OPT (I)k+2

OPT (I) =
OPT (I)k+1, which is a contradiction, since, by induction
hypothesis, we have that OPT (Ik) = OPT (I)k+1.

Lemma 8 can now be used to prove that no constant approx-
imation ratio is achievable for MAX-ECMP-DAG. Recall that,
by Theorem 2, distinguishing, for a given a MAX-ECMP-DAG
instance I , between the following two scenarios in NP-hard:
(1) OPT (I) = 1; and (2) OPT (I) = 2

3 . Observe that
when combined with Lemma 8 this implies that distinguishing,
for a given a MAX-ECMP-DAG instance I , between the
following two scenarios is also NP-hard: (1) OPT (I) = 1; and
(2) OPT (I) = (2

3)k for any constant integer k > 0.

C. Relating MAX-ECMP-DAG to MIN-ECMP-CONGESTION

and MAX-ECMP-FLOW

Given an instance H0 of MAX-ECMP-DAG, let Gk be a
copy of ⊗kH0 with undirected edges. Let s and t be the source
and sink vertices of H0. We denote by Ik an instance (Gk, s, t)
of MAX-ECMP-FLOW. We introduce a property of a graph
instance that will be used to exploit the amplification technique
in MIN-ECMP-CONGESTION and MAX-ECMP-FLOW.

Reversibility: We say that an MEF instance I = (G, s, t) is
non-reversible if OPTMEF (I) ≥ OPTMEF ((G, t, s)).
Similarly, an MEC instance I is non-reversible if
OPTMEC(I) ≤ OPTMEC((G, t, s)).

Lemma 9: Let I = (G, s, t) be an MEF instance with
OPTMEF =

{
k, 2

3k
}

, with k > 0. It is possible to construct
in polynomial time a non-reversible instance I ′ such that
OPTMEF (I) = OPTMEF (I ′).

Proof: If G is non-reversible, we create I ′ = (G′, s′, t)
as a copy of I where s′ is a new vertex added into V (G′).
Moreover, we add four vertices v1, v2.v3, and v4 and connect
them to s through a path (v1, v2, v3, v4, s), with capacity k.
Then, we connect s′ to each vertex v1, v2, v3, v4 with an edge
of capacity 1

4k. Observe that, by construction, the maximum
flow from s to s′ is 1

4k+ 1
8k+ 1

16k+ 1
32k, while the maximum

flow from s′ to s is k since s′ can send a flow of value 1
4k to

v1, v2, v3, and v4, respectively. Hence,

OPTMEF (G, s′, t)
= min{OPTMEF (G′, s′, s), OPTMEF (G′, s, t)}
= min{k, OPTMEF (G, s, t)} = OPTMEF (G, s, t)

≥ 2
3
k ≥ 1

4
k +

1
8
k +

1
16

k +
1
32

k

= OPTMEF (G′, s, s′) ≥ OPTMEF (G′, t, s′),

which means that I ′ is non-reversible.
Corollary 10: Let I = (G, s, t) be a MEC instance with

OPTMEC =
{
k, 3

2k
}

, with k > 0. It is possible to construct
in polynomial time a non-reversible instance I ′ such that
OPTMEC(I) = OPTMEC(I ′).

Proof: It easily follows by Lemma 5.
Relating MAX-ECMP-DAG to MAX-ECMP-FLOW: Given

an instance H0 of MAX-ECMP-DAG such that its undirected
copy G0 is non-reversible. Let s and t be the source and sink
vertices of H0. We say that a flow assignment f in G0 is
compliant with H0 if for every edge (x, y) ∈ E(G0), if a
flow is routed from x to y, then (x, y) ∈ E(H0). We say that
a directed acyclic graph H ′ is an orientation of an undirected
graph G0 if at least an optimal flow assignment f of G
is compliant with H . We denote Hk = ⊗kH0, by Gk the
undirected copy of Hk, and by Ik an instance (Gk, s, t) of
MAX-ECMP-FLOW.

Lemma 11: Suppose that in at least one optimal solution
for (G0, s, t) the corresponding flow assignment is compliant
with H0. Then, OPT (Hk) = OPTMEF (Ik).

Proof: We prove it by induction. In the base case
k = 0, the statement of the lemma holds since instance
I0 is such that it has an optimal solution that is compliant
with H0. In the inductive case k > 0, by Lemma 7 we
know that OPTMEF (Ik) = OPT (Hk) = OPT (H0)k+1 and

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

CHIESA et al.: TE WITH ECMP: AN ALGORITHMIC PERSPECTIVE 785

OPTMEF (Ik+1) is at least OPT (Hk+1) = OPT (H0)k+2.
We want to show that OPTMEF (Ik+1) ≤ OPT (H0)k+2.
Suppose, by contradiction, that there exists a sub-DAG H̄k+1

of Ik+1 such that fH̄k+1
> OPT (I)k+2. Construct a sub-DAG

H̄k of Ik as follows. For each directed edge (v, u(x,y)) ∈
E(H̄k+1), where v is a vertex of Ik+1 in common with Ik

and u(x,y) is the source or target vertex of any subgraph
H(x,y), add (v, y) into E(H̄k) if y �= v, otherwise add (v, x).
Recall that, since I0 is non-reversible, for each graph He,
we have OPTMEF (He, te, se) ≤ OPTMEF (He, se, te) =
OPTMEF (H0, s, t) · cIk

(e), which means that, for each
edge e of Hk, we can route at least a flow OPTMEF (I0)
times smaller than in He. Hence, solution H̄k, induces a
maximum flow through Hk of at least OPTMEF (Ik+1)

OPTMEF (I0) >
OPTMEF (I0)k+2

OPTMEF (I0) = OPTMEF (I0)k+1 units, which is a con-
tradiction, since, by induction hypothesis, we have that
OPTMEF (Ik) = OPTMEF (I0)k+1.

By Lemma 5. we have the following corollary.
Corollary 12: OPT (Hk) = 1

OPTMEC(Ik) .

We present the following lemma, which concludes the
proof.

Lemma 13: For any α > 1, if MAX-ECMP-DAG is
NP-hard to approximate within a factor of α then

• MIN-ECMP-CONGESTION is NP-hard to approximate
within a factor of α in the single source-target pair
setting;

• MAX-ECMP-FLOW is NP-hard to approximate within a
factor of α in the single source-target pair setting.

Proof: Suppose, by contradiction that there exists an
α > 0, such that MAX-ECMP-FLOW can be approximated
within a factor of α, i.e., there exists a polynomial time
algorithm A that, given an instance I of MAX-ECMP-FLOW,
returns a solution of value A(I) ≥ OPTMF (I)

α . We can con-
struct a α-approximation algorithm for MAX-ECMP-DAG as
follows. Let I0 = (H0, s, t) be a MAX-ECMP-DAG instance
used in Lemma 6 such that its undirected copy G0 is non-
reversible. By Lemma 9, we know that such instance must
exists. Moreove, we have that OPT (I0) is either 1 or 2

3 .
Further, it was proved in [8] that it is easy to compute an
orientation of G0 such that at least one optimal solution is
compliant with it. Now, let c be an integer such that

(
2
3

)c
< α.

Let Hc = ⊗cH0, denote by Gc the undirected copy of
Hc, and by Ic an instance (Gc, s, t) of MAX-ECMP-FLOW.
By Lemma 11, we have that OPT (Hc) = OPTMF (Ic). Now,
if OPT (H0) = 1, we have that A((Gc, s, t)) ≥ α. Otherwise,
if OPT (H0) = 2

3 , since OPTMF (Ic) = OPT (Hc) =
(

2
3

)c
,

we have that A(Ik) ≤ (
2
3

)c
< α. Hence, A can be used to

distinguish, in polynomial time, between MAX-ECMP-DAG
instances with optimal value 1 or 2

3 , which is a contradiction
to Theorem 2.

By Lemma 5, the same result also holds for MIN-ECMP-
CONGESTION.

IV. SUM OF LINK COSTS INAPPROXIMABILITY

We now turn our attention to the well-studied MIN-SUM-
COST problem, presented in [8], where each link has a cost
that depends on the amount of flow routed through it, and

the goal is to minimize the sum of the costs acoss links.
As in [5], [8], and [9], we consider the individual-link-cost
function φ(x) = 2x − 1. The objective is to route flow so as
to minimize the expression

min
∑

e∈E(G)

φ

(
fe

ce

)

.

We show that approximating the optimum within any con-
stant factor is NP-Hard. To this end, we again exploit our
amplification technique, which uses the operator ⊗.

We first introduce and study a related problem, called
MIN-CONGESTED-EDGES. The goal is to minimize the num-
ber of edges have congestion, that is, value fe

ce
, at least 3

2 .
We then show how to leverage our ⊗ amplification tech-
nique to amplify the gap between two different classes of
instances of MIN-CONGESTED-EDGES, as we did for the
MAX-ECMP-DAG problem in the previous section. Finally,
we relate MIN-CONGESTED-EDGES to MIN-SUM-COST,
concluding that the the latter is not approximable within any
constant factor (Theorem 17).

MIN-CONGESTED-EDGES Problem: An instance I of this
problem is a graph G, a source vertex s, and a target vertex t,
exactly as in the MEC and the MEF problems.

In the reduction from 3-SAT used in [10] to prove that
MIN-ECMP-CONGESTION is not approximable within a factor
of 3

2 , a SAT formula F with n variables is transformed into an
instance I = ((G, s, t), ·) of MIN-ECMP-CONGESTION such
that, if a variables assignment satisfies a clause c, then the edge
ec associated with clause c is such that fec

cec
≤ 1, otherwise

fec

cec
= 3

2 . Since the reduction is from 3-SAT, we can use the
following well-known inapproximability result (Theorem 14)
to prove that also in a slightly modified Fortz and Thorup con-
struction, at least a certain amount of edges must be congested
(Lemma 15).

Theorem 14 [18]: For any ε > 0, MAX-3-SAT is (7
8 + ε)-

hard to approximate.
We omit the proof of the following lemma, which is based

on Theorem 14 and on a straightforward modification of the
Fortz and Thorup construction.

Lemma 15: There exists two constants α > 1 and p > 0
such that, given a congestion threshold C = 3

2 , it is NP-Hard
to approximate MIN-CONGESTED-EDGES within a factor of
α even if the input instance I is “non-reversible”, in its optimal
solution either all edges have congestion at most 1 or at least
a fraction p of its edges have congestion at least C, and an
orientation of I is given in input.

In MIN-CONGESTED-EDGES, an instance I = (G, s, t) is
non-reversible if, in every optimal solution of (G, t, s) at least
p > 0 edges have congestion at least 3

2 .
We now prove the following key lemma that, given an

instance I , provide a lower bound on the number of edges
that are “heavily” congested in ⊗kI , with k ∈ N.

Let I = (G, s, t) be a non-reversible MIN-SUM-COST

instance such that it only admits solutions where at least
a fraction p > 0 of its edges have congestion at least C.
Let H be a directed copy of G such that there exists at
least an optimal flow assignment for I that is compliant

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

786 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

with H . We denote by Gk the undirected copy of ⊗kH and by
Ik = (Gk, s, t).

Lemma 16: For every k ≥ 0, every solution for (Gk, s, t)
is such that at least a fraction pk+1 of the edges of Gk have
congestion at least Ck+1.

Proof: We prove it inductively on k. In the base case
k = 0, the statement trivially holds. In the inductive step
k > 0, by inductive hypothesis, in every solution of Ik at least
pk+1|E(Gk)| edges have congestion at least Ck+1. We want
to prove that in every solution of Ik+1 at least pk+2|E(Gk+1)|
of the edges have congestion at least Ck+2. Suppose, by
contradiction, that there exists an optimal solution Ā of Ik+1

(i.e., a sub-DAG of ⊗kH with a source s and a sink t) such that
less than pk+2|E(Gk+1)| edges have congestion at least Ck+2.
We now construct an optimal sub-DAG solution Ak of Ik from
Ā exactly as we did in the proof of Lemma 8, i.e., for each
vertex in common between Gk and Gk+1, we split traffic in
the same way.

Recall that, each edge e of Gk with capacity cGk
(e) �= ∞

is replaced by a graph Ge = G in Gk+1, where the capacity
of each edge of Ge is multiplied by cGk

(e). Observe that, by
definition of G, we have that at least a fraction p of the edges
in E(G) have a congestion of C, when one unit of traffic is
routed from s to t in G. As a consequence, by definition of Ge,
we know that at least a fraction p of its edges have congestion
Ce ≥ Cfe, where fe is the amount of flow routed from se to te
in Gk+1. By construction of Ak, we have that edge e ∈ E(Gk)
is also traversed by a flow fe, which means that its congestion
is Ce

C . By a simple counting argument, there only exist at
least (1 − pk+1)|E(Gk)| subgraphs Ge such that for each of
them less than p|E(G)| edges have congestion at least Ck+2.
This implies, that the flow assignment associated with Ak is
such that at least (1 − pk+1)|E(Gk)| edges have congestion
at most Ce

C < Ck+2

C = Ck+1, which is a contradiction
since, by inductive hypothesis, in any solution of Ik at least
pk+1|E(Gk)| edges have congestion at least Ck+1.

We now prove that MIN-SUM-COST is inapproximable
within any constant factor. We consider the two class of
instances of Lemma 15. We then leverage our construc-
tion technique based on operator ⊗ on these instances. As
a consequence, by Lemma 12 and Lemma 16, the gap
between the optimal sum of link costs can be set arbitrary
large.

Theorem 17: It is NP-Hard to approximate the
MIN-SUM-COST problem within any constant factor.

Proof: Suppose that there exists an α-approximation
algorithm for a certain constant α. Let I = (G, s, t) be a
non-reversible instance of MIN-CONGESTED-EDGES used to
prove the NP-Hard-ness in Lemma 16, i.e., in any optimal
solution of I either (i) all edges have congestion at most 1
or (ii) at least a fraction p of the edges have congestion at
least C =

{
3
2

}
. Let H be a directed copy of G such that

there exists at least an optimal flow assignment of I that is
compliant with H .

We now leverage our result for MIN-CONGESTED-EDGES

to get an estimate of the value of an optimal solution of the
MIN-SUM-COST problem on an instance constructed based
on I using our operator ⊗.

In case (i), by Lemma 12, each edge of Gk in the
optimal solution of Ik has congestion at most 1. Hence,
∑

e∈E(Gk) φ
(

fe

ce

)
≤ φ(1)|E(Gk)| = |E(Gk)|. In case

(ii), by Lemma 16, there exists at least a fraction pk+1

of the edges of Gk that have congestion at least Ck+1.
Hence,

∑
e∈E(Gk) φ

(
fe

ce

)
≥ pk+1|E(Gk)|φ

((
3
2

)k+1
)

=

pk+1|E(Gk)|2(3
2)

k+1−1. Hence, the value of an optimal solu-

tion in case (ii) is at least 2(3
2)

k+1−1pk+1 times higher than
the value of an optimal solution in case (i). This quantity can
be made larger than α, for any α ≥ 1, by carefully selecting a
certain k > 0. This implies that, an α-approximation algorithm
for MIN-SUM-COST can be exploited to distinguish between
the two class of instances, which is a contradiction because
of Lemma 15.

V. NON-CONSTANT (ALMOST POLYNOMIAL)
INAPPROXIMABILITY FACTORS

Theorem 1 shows that both MIN-ECMP-CONGESTION and
MAX-ECMP-FLOW cannot be approximated with any constant
factor unless P=NP. However, if one is willing to use a slightly
stronger assumption than P �= NP , namely that NP is not
contained in ‘quasi-polynomial’ time, then a stronger hardness
result is attainable (see below). Again, this result is achieved
via the repeated use of our gap-amplification technique
(see, e.g., [19] for a similar approach).

To make our statement formal, we define the quasi-
polynomial time family to be the set of decision problems
that have an n(log n)β

-time solution, where n denotes the size
of the instance and β is any positive constant.

Theorem 18: For any ε > 0, MAX-ECMP-FLOW is hard to

approximate within factor
(

3
2

)(log n)1−ε

, where n is the number
of edges of the input graph, unless NP is in quasi polynomial
time.

Note that if one assigns the value 0 to the term ε in the
expression for the hardness-of-approximation factor above,
then it becomes a constant power of n. But since the theorem
requires that ε > 0, one can interpret the hardness factor as
being “almost-polynomial” in n – a power of n that slowly
decreases to 0 as n grows. Before we prove Theorem 18 let
us start with the following technical lemma.

Lemma 19: Let I be a MAX-ECMP-DAG instance. Then
|E(⊗kI)| ≤ |E(I)|k+2.

Proof: Let |E(I)| be the number of edges of I . The num-
ber of edges of ⊗kI is |E(⊗kI)| = |E(I)|k+1 + 2(|E(I)|k +
· · ·+ |E(I)|) ≤ |E(I)|k+1 + 2|E(I)|k+1 ≤ |E(I)|k+2, where
in the last inequality we assumed that |E(I)| ≥ 2.

We are now ready to prove Theorem 18.
Proof of Theorem 18: We repeat the construction as in

Lemma 8, except that we increase the value of k. Con-
sider a given MAX-ECMP-DAG instance I0 = (G, s, t),
whose optimal solution is either 1 or 3

2 . We now pick k =
�(log |E(G)|)γ�, for some constant γ > 1−ε

ε . By Lemma 19
we have that

|E(⊗kI)| ≤ |E(I0)|k+2, (1)

and thus ⊗kI can be constructed from I0 in quasi-polynomial
time. By Lemma 8, we have that OPT (⊗kI) is either 1

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

CHIESA et al.: TE WITH ECMP: AN ALGORITHMIC PERSPECTIVE 787

or
(

2
3

)k+1
, depending on the maximal flow in the original

instance I . If we could get a polynomial time approximation
for MAX-ECMP-DAG within factor

(
2
3

)k+1
on ⊗kI (here we

mean polynomial time in the size of ⊗kI), we could determine
whether OPT (I) is 1 or 2

3 . Together with the construction
of ⊗kI this would take quasi-polynomial time, and would be
a contradiction of Theorem 2 if we assume that NP is not
contained in quasi-polynomial time.

We thus have that it is hard to get a polynomial time
approximation within

(
2
3

)k+1
for an instance the size of ⊗kI .

Let us now recompute the value of k as a function of the size
of ⊗kI . Using Equation 1, we have

|E(I0)|k+2 ≥ |E(⊗kI)|
(k + 2) log |E(I0)| ≥ log |E(⊗kI)|.

Since log |E(I0)| ≤ k
1
γ ≤ (k + 2)

1
γ , we have that

(k + 2)(k + 2)
1
γ ≥ log |E(⊗kI)|

(k + 2)
γ+1

γ ≥ log |E(⊗kI)|
k ≥ (log |E(⊗kI)|) γ

γ+1 − 2
k ≥ (log |E(⊗kI)|)1−ε − 2

which implies that MAX-ECMP-FLOW is not approximable
within a factor of

(
3
2

)k+1

≥
(

3
2

)(log |E(⊗kI)|)1−ε

,

unless NP is in quasi polynomial time, which proves the
statement of the theorem. �

VI. TE WITH ECMP IN DATACENTER NETWORKS

We now explore the guarantees of TE with ECMP in two
specific network topologies, which have recently been studied
in the context of datacenter networks: folded Clos networks
and hypercubes. We prove that while in hypercubes optimal TE
with ECMP remains intractable, ECMP routing easily achieves
the optimal TE outcome in folded Clos networks. Our positive
result for folded Clos networks implies that TE with ECMP
is remarkably good when traffic consists of a large number of
small (mice) flows (see Hedera [1]), or when traffic is split at a
packet-level (instead of IP-flow-level, e.g., via Random Packet
Spraying [14]), as in these contexts the splittable-flow model
well-captures the network behavior. We discuss the handling
of unsplittable large (elephant) flows in Section VII.

A. TE With ECMP Is Optimal for Folded Clos Networks

We now present our optimality result for TE with ECMP in
folded Clos networks (FCNs).

Folded Clos Networks: An n-FCN is a graph whose vertices
are partitioned into n sets, called stages, that is obtained via
the following recursive construction:

• A 1-FCN. A 1-FCN consists of a single stage (“stage 1”)
that contains a single vertex.

• Construction of an n-FCN from an (n-1)-FCN. Let
Fn−1 be an (n-1)-FCN. An n-FCN Fn is constructed as
follows:

– Creating stages 1, . . . , n − 1 of Fn: Create, for
some chosen k > 0, k duplicates of Fn−1:
Fn−1

1 , . . . , Fn−1
k . Set stage i = 1, . . . , n−1 of Fn to

be the union of the i’th stages of Fn−1
1 , . . . , Fn−1

k .
Create an edge between two vertices in stages
1, . . . , n − 1 of Fn iff the two vertices belong to
the same Fn−1

t and there is an edge between the
two vertices in Fn−1

t .
– Creating stage n of Fn: Create, for a chosen r >

0, r new vertices vi,1, . . . , vi,r for every vertex i in
the n − 1’th stage of Fn−1. Set the n’th stage of
Fn to be the union

⋃
i{vi,1 . . . , vi,r}. Create, for

every vertex i in the n−1’th stage of Fn−1 an edge
between each of the k vertices in the n− 1’th stage
of Fn that correspond to vertex i and each of the
vertices in {vi,1, . . . , vi,r}.

Figure 5 shows a 3-FCN constructed by interconnecting
six 2-FCNs. Past work focused on the scenario that all
link capacities in an FCN are equal (as in [6], [20], and
[21]). Our positive result below extends to the scenario that
only links in the same “layer”, that is, that all links that
connect the same two stages in the FCN, must have equal
capacity.

TE With ECMP Is Optimal for Clos Networks Even
When All Link Weights Are 1: We investigate the com-
plexity of MIN-ECMP-CONGESTION, MIN-SUM-COST, and
MAX-ECMP-FLOW, for FCNs. We call a demand matrix
for an FCN “inter-leaf” if the sources and targets of traffic
are all vertices in stage 1 of the FCN (i.e., the leaves of
the multi-rooted tree). Inter-leaf demand matrices capture
realistic traffic patterns in datacenters, as most traffic in a
datacenter flows between the top-of-rack switches at the lowest
level of the datacenter topology. We present a surprising
positive result: Setting all links weights to be 1 (i.e, the
default in datacenters) results in the optimum traffic flow
for any inter-leaf demand matrix for all three optimization
objectives.

Theorem 20: When all link weights in an FCN net-
work are 1 ECMP routing achieves the optimum flow with
respect to MIN-ECMP-CONGESTION, MIN-SUM-COST, and
MAX-ECMP-FLOW.

We now prove this result with respect to MIN-ECMP-
CONGESTION, and for the scenario that all edge capacities
are equal. We defer the proofs for MIN-SUM-COST and
MAX-ECMP-FLOW, and also the extension to more general
edge capacities, to the full version of the paper [16].

Proof: Let F be an n-FCN network such that n ≥ 2 and
all link weights are 1. An l-sub-FCN of F , for 1 ≤ l ≤ n
is the subgraph of F that is induced by all vertices in stages
1, . . . , l (i.e., the graph consisting of these vertices and edges
between them only).

Now, let S be any sub-FCN of F with l ≤ n stages of F and
let F l−1

1 , . . . , F l−1
m be all the (l−1)-sub-FCNs of S that used

in the recursive construction of S (see above). V̄ (S) denotes
the set of vertices in the last stage of S and V̄ (F l−1

i), with
i = 1, . . . , m denotes the set of vertices in the last stage
of F l−1

i . The following claims easily follow from the con-
struction of F and S.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

788 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

Fig. 5. A 3-FCN constructed by interconnecting six 2-FCNs.

Claim 1: If l > 1 (S has more than one stage), then
for every two vertices v ∈ V̄ (S) and u ∈ V̄ (F l−1

i) for
i = 1, . . . , m, (u, v) is on a shortest-path from v to any vertex
in the first stage of V (F l−1

i).
Proof: We prove by induction on l that the length of

the shortest-path from v to any vertex z in the first stage of
F l−1

i is |l − 1|. Clearly, if l = 2, then there is a unique path
of length 1 between v and every vertex in the first stage.
If l > 2, then by the induction hypothesis there exists a
shortest-path of length l−2 from any vertex in V̄ (F l−1

i) to any
vertex z in the first stage of F l−1

i . As v is directly connected
to a vertex in V̄ (F l−1

i), and every path to z must cross a
vertex in V̄ (F l−1

i), the claim follows.
Claim 2: If l > 1 (S has more than one stage), then

for every two vertices v ∈ V̄ (S) and u ∈ V̄ (F l−1
i) for

i = 1, . . . , m, (u, v) is on a shortest-path from v to any vertex
in the first stage of F that is not in V (F l−1

i).
Proof: We prove by induction on j = n− l that the length

of the shortest-path from any u ∈ V̄ (F l
i) to any vertex z in the

first stage of F that is not in V (F l−1
i) is the same. Observe

that if j = 0, then, by Claim 1, the shortest path between
a vertex in V̄ (S) and a vertex z in the first stage of F that
is not in V (F l−1

i) is n − 1. As every vertex u ∈ V̄ (F l
i) is

directly connected to a vertex in V̄ (S), and as all shortest-
paths from y must cross a vertex in V̄ (S), the claim follows.
Now, if j > 1, then by induction hypothesis and by Claim 1,
from every vertex in V̄ (S) there exists a shortest-path to z
(with nonnegative length). Since every vertex u ∈ V̄ (F l

i) is
directly connected to a vertex in V̄ (S) and every shortest-
path from u must cross a vertex in V̄ (S), the claim again
follows.

Let FS be the set of flows such that (i) the source vertex
is in S and the target vertex is not in S; or (ii) the source
vertex is in F l

i for some i = 1, . . . , m and the target vertex is
in some F l

j for j �= i.

Claim 3: Each vertex in V̄ (S) receives an equal fraction of
every flow f ∈ FS.

Proof: We prove the claim by induction on l, that is, the
number of stages of S. When l = 1, S is simply a 1-FCN and
the claim trivially follows. Now, suppose that l > 1. By the
induction hypothesis, each vertex v ∈ V̄ (F l−1

i) receives the
same fraction of any flow f ∈ FS whose source is contained
in V (F l−1

i). Since every vertex in V̄ (F l−1
i) is connected to the

same number of vertices in V̄ (S), each vertex v ∈ V̄ (S) must
be (directly) connected to precisely one vertex mv ∈ V̄ (F l−1

i).
By Claim 2, v is contained in a shortest-path from mv to the
target vertex of f , and so each vertex in V̄ (S) receives an
equal fraction of f .

Let F̄S be the set of flows such that the target vertex is in S
and the source vertex is not in S.

Claim 4: Each vertex in V̄ (S) receives an equal fraction of
every flow F̄S.

Proof: We prove the claim by induction on the number
of stages l = n, . . . , 1 of F . When l = n, F̄S = and the
statement holds. Otherwise, if l < n, let T be a (l + 1)-sub-
FCN of F that contains S as a subgraph. Consider any flow
f ∈ F̄S . If the source vertex of f is in (not in) T , then, by
Claim 3 (by the induction hypothesis), each vertex in V̄ (T)
receives an equal fraction of every flow f ∈ F̄S . Since each
vertex in v ∈ V̄ (T) is connected to exactly one vertex in V̄ (S),
each vertex mv ∈ V̄ (S) is connected to the same number of
vertices in V̄ (T), and, by Lemma 1, mv is contained in a
shortest path from v to the target vertex of f , we have that
each vertex in V̄ (S) receives an equal fraction of f .

Let ES be the set of edges between vertices in V̄ (S) and
vertices in stage l− 1 of F . Observe that, by the definition of
FCN, the set of vertices in V̄ (S) is a vertex-cut of F for all
pairs in FS . Hence, each flow in FS and F̄S must traverse
at least one vertex in V̄ (S) and through at least one edge in
ES . Let F∗

S be the sum of all the flows in FS and in F̄S . We

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

CHIESA et al.: TE WITH ECMP: AN ALGORITHMIC PERSPECTIVE 789

have that F∗
S

cl|ES| , where cl is the capacity of edges between

vertices in the l’th and in the (l − 1)’th stages, is a lower
bound on the amount of flow that is routed through the most
loaded edge in ES . We will now prove that when all link
weights are 1, this lower bound is achieved (and the theorem
follows).

Edges in ES connect vertices in V̄ (S) to vertices in stage
l − 1 of S. Since each vertex in V̄ (S) is connected to the
same number of vertices in stage l−1 of S and each vertex in
stage l − 1 of S is connected to the same number of vertices
in V̄ (S), Claim 3 and Claim 4 imply that each edge carries
an equal fraction of each flow in F∗

S .

B. TE With ECMP Is NP-Hard for Hypercubes

We now investigate MIN-ECMP-CONGESTION in hyper-
cubes. We show that, in contrast to folded Clos networks,
MIN-ECMP-CONGESTION in hypercubes is NP-hard.

Hypercubes: A k-hypercube is a graph in which the set
of vertices is {0, 1}k and an edge between two vertices
u = (u1, . . . , uk) and v = (v1, . . . , vn) exists iff the Hamming
distance between u and v is 1 (that is, the two vertices differ
in just a single coordinate).

Optimizing TE With ECMP Is Intractable for Hypercubes:
We present the following hardness result for hypercubes.

Theorem 21: Computing the optimal flow with respect to
MIN-ECMP-CONGESTION in hypercubes is NP-hard.

VII. ROUTING ELEPHANTS IN DATACENTER NETWORKS

A key shortcoming of ECMP is that large, long-lived
(“elephant”) flows traversing a router can be mapped to the
same output port. Such “collisions” can cause load imbalances
across multiple paths and network bottlenecks, resulting in
substantial bandwidth losses. To remedy this situation, recent
studies, e.g., Hedera [1] and DevoFlow [15], call for dynam-
ically scheduling elephant flows in folded Clos datacenter
networks so as to minimize traffic imbalances (while still
routing small, “mice” flows via link-state routing and ECMP).
We therefore next focus on the so called “unsplittable-flow
model”.

Min-Congestion-Unsplittable-Flow (MCUF): We study the
Min-Congestion-Unsplittable-Flow (MCUF) objective: The
input is a capacitated graph G = (V, E, c) and a set D̄
of “flow demands” of the form (s, t, γ) for s, t ∈ V and
γ > 0, where a single source-target pair (s, t) can appear in
more than one flow demand. The goal is to select, for every
flow demand (s, t, γ), a single shortest-path from s to t, such
that the maximum load, i.e., maxe

fe

ce
, is minimized (as in

MIN-ECMP-CONGESTION, see Section II for formal defini-
tions of flow assignments and load). We aim to understand how
well unsplittable flows can be routed in datacenter network
topologies and, specifically, in FCNs.

MCUF Cannot Be Approximated Within a Factor Better Than
2 Even in 2-FCNs: We show that approximating MCUF within
a factor better than 2 is NP-hard even in a 2-FCN, i.e., in a
complete bipartite graph. Our proof relies on a reduction from
the well-studied (NP-hard) 3-EDGE-COLORING problem [22].

Theorem 22: Approximating MCUF within a factor of 2−ε
is NP-hard for 2-FCNs for any constant ε > 0.

A 5-Approximation Algorithm for 3-FCNs: We now consider
3-FCNs, which are of much interest in the datacenters context.
Reference [20] and VL2 [6] advocate 3-FCNs as a datacenter
topology, and Hedera [1] and DevoFlow [15] study the routing
of elephant flows in such networks. We present a natural,
greedy algorithm for MCUF, called EQUILIBRIUM-ALGO:

• Start with an arbitrary assignment of a single shortest-
path for every source-target pair (s, t).

• While there exists a source-destination pair (s, t) such
that rerouting the flow from s to t to a different path can
either (1) result in a lower maximum load or (2) lower
the number of links in the network with the highest load,
reroute the flow from s to t accordingly. We call this a
“reroute operation”.

We show that EQUILIBRIUM-ALGO has provable guaran-
tees. Recall that D is a set of flow demands

Theorem 23: After |D̄| reroute operations, EQUILIBRIUM-
ALGO approximates MCUF in 3-FCNs within a factor of 5.

Theorem 22 establishes that even in 2-FCNs (and hence also
in 3-FCNs) no approximation ratio better than 2 is achievable.
We leave open the question of closing the gap between the
lower bound of 2 and upper bound of 5 (see Section X). We
do show that the analysis of EQUILIBRIUM-ALGO is tight for
equal-size flows (proof omitted). We point out that the key idea
behind EQUILIBRIUM-ALGO (rerouting flows to least loaded
paths until reaching an equilibrium) resembles the simulated
annealing procedure in Hedera [1] and can be regarded as a
first step towards analyzing the provable guarantees of this
family of heuristics.

Proof of 5-Approximation Guarantee: We introduce the
following notation. Consider a 3-FCN F that contains kr

2-FCNs, each with kb vertices in its first stage and km vertices
in its last stage. Every i’th vertex in the last stage of a 2-FCN is
connected to the same kt vertices in the last stage of F . Hence,
there are ktkm vertices in the last stage of F . We denote
by bj

i (mj
i) the i’th vertex in the first (second) stage of the

j’th FCN. Each vertex mj
i is connected to vertices tj1, . . . , t

j
kt

in the last stage of F . Consider a flow assignment computed
by EQUILIBRIUM-ALGO. A flow demand d ∈ D̄ from vertex
s to vertex t of size γd is denoted by ((x, y), γd). For each
demand d ∈ D̄, let pd be the simple path along which d
is routed and c(pd) be the value of the most congested link
of pd. For the sake of simplicity, we assume that all edges has
equal capacity. Since the capacity scales both the value of the
optimal solution and the value of the solution computed by
EQUILIBRIUM-ALGO by the same factor, we can assume that
all edges have capacity of 1.

Lemma 24: Let d ∈ D̄ be a flow demand such that c(pd) >
5 · OPT . There exists a path p′ between s and t such that
c(p′) ≤ 5 · OPT − γd.

Proof: Suppose, by contradiction, that such a path p′ does
not exists. Let bj

i and bl
g, with i, g ∈ [kb] and j, l ∈ [kr],

where [n] = {1, . . . , n}, be the source and target vertices
of d, respectively. Observe that, since OPT ≥ γd, we have
c(pd) > 5 · OPT ≥ 5γd. Let nb (n′

b) be the number of edges
incident to bj

i plus the number of edges incident to bl
g that have

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

790 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

congestion greater than 5 · OPT (greater than 5 · OPT − γd

and at most 5 · OPT). We denote by Fv the amount of flow
demands that have v as a source or target vertex. We have
that, Fbj

i
+ Fbl

g
> nb(5 · OPT) + n′

b(5 · OPT − γd) ≥
5nbOPT +n′

b(5 ·OPT −OPT) = 5nbOPT +4n′
bOPT . Let

F∗ = max{Fbj
i
,Fbl

g
}. We have 2F∗ > 5nbOPT + 4n′

bOPT .
Since F∗ must necessarily be split among km edges, we have
OPT ≥ F∗

km
. Combining this bound with the previous one,

we obtain kmOPT >
5nbOPT+4n′

bOPT
2 ⇒ km >

5nb+4n′
b

2 ⇒
km

2 > 5
4nb + n′

b.
Now, let H be the set of indices h ∈ [km] such that both

(bj
i , m

j
h) and (bl

g, m
l
h) have congestion lower than or equal to

5 · OPT − γd and H̄ be the set of indices h̄ ∈ [km] not con-
tained in H , i.e., the set of indices h̄ ∈ [km] such that (bj

i , m
j

h̄
)

or (bl
g, m

l
h̄
) has congestion greater than 5·OPT−γd. Observe

that |H̄| ≤ nb + n′
b and |H | = km − |H̄|, which implies that

|H | = km−|H̄| ≥ km−(nb+n′
b) ≥ km−(5

4nb+n′
b). Further,

since km

2 > 5
4nb + n′

b, we have that km − (5
4nb + n′

b) > km

2 ,

which implies that |H | > km

2 . Observe that, if j = l, i.e.,
the source and target vertex are both in the j’th 2-FCN,
hence d can be routed through any path (bj

i , m
j
h, bj

g), with
h ∈ H , which has congestion at most 5 · OPT − γd. This is
a contradiction, since we assumed such path does not exists.
Hence, j �= l. In this case, let nt (n′

t) be the number of edges
incident to any vertex thx, with h ∈ H and x ∈ [kt] and
congestion greater than 5 · OPT (greater than 5 · OPT − γd

and at most 5 · OPT). Observe that each path (mj
h, thx, ml

h)
must have congestion at least 5·OPT −γd, otherwise d can be
routed through (bj

i , m
j
h, thx, ml

h, bl
g), which is a contradiction.

Hence, we have nt + n′
t ≥ |H |kt ≥ (km − nb − n′

b)kt.
Moreover,

∑

i=1,...,kb

Fbj
i
+

∑

i=1,...,kb

Fbl
i

> nt(5 · OPT) + n′
t(5 · OPT − γd)

≥ 5ntOPT + 4n′
tOPT = OPT (5nt + 4n′

t),

where
∑

i=1,...,kb
Fbj

i
(
∑

i=1,...,kb
Fbl

i
) is the sum of the flows

originated from or directed to a vertex in the j’th (l’th) FCN
of F . Let FH = max{∑i=1,...,kb

Fbj
i
,
∑

i=1,...,kb
Fbl

i
}. We

have that 2FH > OPT (5nt + 4n′
t).

Since FH must necessarily be split among ktkm edges, we
have OPT ≥ FH

ktkm
. Combining this with 2FH > OPT (5nt+

4n′
t), we obtain ktkmOPT >

OPT (5nt+4n′
t)

2 . Since km

2 >
5
4nb + n′

b and nt + n′
t ≥ (km − nb − n′

b)kt, we have that
2ktkm > 5nt +4n′

t = 4(nt +n′
t)+nt ≥ 4kt(km−nb−n′

b)+
nt = 4kt

(
km − 5

4nb − n′
b + 1

4nb

)
+nt ≥ 4kt

(
km

2 + nb

4

)
+nt,

which implies that 2km > 2
(
km + nb

4

)
+ nt

kt
⇒ 0 > nb

2 + nt

kt
—

a contradiction. This concludes the proof of the lemma.
Theorem 23. After |D̄| reroute operations, EQUILIBRIUM-

ALGO approximates MCUF in 3-FCNs within a factor of 5.
Proof: Let D̄′ = {d ∈ D̄|c(pd) ≥ 5 · OPT }.

By Lemma 24, each flow d ∈ D̄′ can be routed through a
path p′ such that c(p′) ≤ 5 · OPT − γd by a single rerouting
operation. Once a flow is rerouted, it does no longer belong
to D̄′. Hence, since |D̄′| ≤ |D̄|, after at most D̄ rerouting
operations, each flow d ∈ D̄ is such that c(pd) < 5 ·OPT .

Fig. 6. Average throughput in a 3 stages Clos network with 8 (left) and 16
(right) ports per switch, respectively.

Corollary 25: If all flows have equal size, then
EQUILIBRIUM-ALGO is a 4-approximation algorithm
and it runs in polynomial time if it is halted after at most |D|
reroute operations.

VIII. SIMULATIONS

In this section, we perform an evaluation of EQUILIBRIUM-
ALGO by comparing it against the simpler ECMP routing,
which is a static routing algorithm, and the more complex
HEDERASA [1], a simulated-annealing-based routing algo-
rithm designed to dynamically reroute flows within a data
center network. We consider Clos networks with 3 stages
and the same number of ports per switch. We recall that
the end-hosts servers are connected to the first layer of the
Clos network. Our simulation are reproducible and publicly
available [23].

We first describe how HEDERASA works. While
EQUILIBRIUM-ALGO assigns a core switch (i.e., a top-
layer switch) to each large flow, HEDERASA assigns a core
switch to each end-host destination, hence routing the whole
traffic on a per-destination basis. To minimize the chances
of congestion among large flows, HEDERASA assigns a
different core switch to each end-host destination within the
same 2-FCN subnetwork, commonly referred as a POD of
the Clos network. HEDERASA periodically swaps the core
switches assigned to the end-host destinations based on an
estimate of the traffic demands, which is computed by an
external demand estimation component. In our simulations,
we let each routing algorithm access the same demand
estimation component, thus providing a fair comparison
between the routing algorithm components, independent
of the specific demand estimator algorithm. Based on the
benchmark evaluation of the demand estimation process
described in [1], we assume that the size of a flow is revealed
to the routing algorithm after 10ms, which is the average time
required in [1] to detect an elephant flow in a Clos network
with no more than 8192 hosts.

We run the network simulator used to assess the quality of
HEDERASA, as described in [1]. This simulator receives as
input a traffic pattern consisting of a set of traffic demands
of different sizes. We generate traffic according to typical
datacenter traffic patterns [6], in which most of the flows are
small, yet the few large flows account for the vast majority
of the bits sent throughout the network. We generate flows
based on a Poisson arrival process. The simulator models data
communication using a flow model, where the size of a flow
represents the bandwidth used by that flow at a specific time.
TCP slow start and AIMD are modeled by increasing and

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

CHIESA et al.: TE WITH ECMP: AN ALGORITHMIC PERSPECTIVE 791

decreasing the size of a flow depending on whether there is a
link that saturated its bandwidth on the path where the flow is
routed. For a more detailed description of the simulator and a
discussion of its limitations, we refer the reader to [1].

We ran each simulation for the equivalent of 30 sec-
onds and measured the average throughput achieved by
ECMP, EQUILIBRIUM-ALGO, and HEDERASA in the interval
[5s, 25s]. To make a fair comparison between EQUILIBRIUM-
ALGO and HEDERASA we use the same initial per-destination
routing for both of them. Namely, we initially route flows as
previously described in the HEDERASA approach, where each
destination end-host is assigned a different core switch.

Our analysis, shows that both EQUILIBRIUM-ALGO and
HEDERASA outperform ECMP by roughly a 10% factor both
in a Clos network with 128 and 1024 end hosts (see Fig. 6).
We observe that the higher complexity of running a simulated
annealing procedure provides little or no benefits compared
to the simpler EQUILIBRIUM-ALGO routing algorithm. In
addition, EQUILIBRIUM-ALGO reroutes less flows than HED-
ERASA since it only reroutes large flows.

IX. RELATED WORK

Configuring OSPF link weights and ECMP routing have
been the subject of extensive research in the past two decades
(in a broad variety of contexts: ISP networks, datacenters, and
more). Generally speaking, research along these lines has thus
far primarily focused on experimental and empirical analyses.
We now discuss relevant past studies and their connections to
our work. We refer the reader to [24]–[26] for more complete
surveys.

TE With EMCP: We study TE with ECMP routing within
the (“splittable flow”) model of Fortz and Thorup [10]. Past
work on optimizing ECMP routing mostly examined heuris-
tic approaches (e.g., local search [10], branch-and-cut for
mixed-integer linear programming [27], memetic [28] and
genetic [29] algorithms) with no provable performance guar-
antees. Reference [10] proves that MIN-ECMP-CONGESTION

is NP-hard and cannot be approximated within a factor
of 3

2 . These results leave hope that an (efficient) algo-
rithm for configuring link weights with good (provable)
guarantees is possible. Our inapproximability results for
MIN-ECMP-CONGESTION, MIN-SUM-COST, and MAX-
ECMP-FLOW, shatter this hope (and, in a sense, establish the
necessity of heuristics).

TE With ECMP in Datacenters: The emergence of data-
center networks spurred a renewed interest in interconnection
networks [30]. Topologies such as Clos networks [20] and
generalized hypercubes [12], [13], [31] have been proposed
as datacenter topologies. We compare Clos and hypercube
networks from an ECMP routing perspective. Our analy-
sis of Clos networks (Theorem 20) supports and explains
(i) the experimental results in [14] and [32] regarding packet-
level traffic splitting in Clos networks, and also (ii) the
experimental results in [1] regarding the routing of small
(mice) flows via ECMP in Clos networks. Our optimality
result for Clos networks shows that the optimal link weight
configurations with respect to MIN-ECMP-CONGESTION,

MIN-SUM-COST, and MAX-ECMP-FLOW, can be computed
independently of the actual demand matrix and can therefore
be regarded as “oblivious routing”. Reference [21] presents
results for oblivious routing in fat tree topologies. Our optimal-
ity result for Clos networks can be regarded as a generalization
of the result in [21] for oblivious multipath routing in fat
trees to more general (Clos) networks and edge capacities,
and to other performance metrics (namely, MIN-SUM-COST

and MAX-ECMP-FLOW).
Routing Elephant Flows in Datacenters: Under ECMP

routing, all packets belonging to the same IP flow are routed
along the same path. Consequently, a router might map large
(elephant) flows to the same outgoing port, possibly leading to
load imbalances and throughput losses. Optimizing routes for
“unsplittable flows” is shown to be O(log n)-approximable
in [33] for general networks. Recent work studies the
routing of unsplittable flows in Clos datacenter networks [1],
[6], [15], [34] and experimentally analyzes greedy and other
heuristic approaches, e.g., simulated annealing. We initiate
the formal analysis of the routing of unsplittable flows in
datacenter networks and present upper and lower bounds
on the approximability of this task in Clos networks.
We present, among other results, a simple, greedy
5-approximation algorithm. We point out that the key
idea behind our algorithm (rerouting flows to least loaded
paths until reaching an equilibrium) resembles the simulated
annealing procedure in Hedera [1] and can be regarded as a
first step towards analyzing the provable guarantees of this
natural heuristic.

X. CONCLUSION AND FUTURE RESEARCH

We studied TE with ECMP from an algorithmic perspective.
We proved that, in general, not only is optimizing link-
weight configuration for ECMP an intractable task, but even
achieving a good approximation to the optimum is infea-
sible. We showed, in contrast, that in some environments
ECMP(-like) routing performs remarkably well (e.g., Random
Packet Spraying in multi-rooted trees [14], specific traffic
patterns). We then turned our attention to the question of
optimizing the routing of elephant flows and proved upper
and lower bounds on the the approximability of this task. Our
results motivate further research along the following lines:

• ECMP in datacenters. We showed that TE with ECMP
is NP-hard for hypercubes. What about approximating
the optimum? Can a good approximation be computed in
a computationally-efficient manner? Another interesting
question is adapting this result to show similar hard-
ness results for specific hypercube-inspired topologies
(e.g., Bcube [12], and MDCube [13]). What about other
proposed datacenter topologies, e.g., random graphs ala
Jellyfish [35]?

• Routing elephants. We presented positive and neg-
ative approximability results for routing elephants in
folded Clos networks. What is the best achievable
approximation-ratio? What are the provable guarantees of
simulated annealing (see Hedera [1]) in this context? We
believe that research along these lines can provide useful
insights into the design of elephant-routing mechanisms.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

792 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 2, APRIL 2017

• ECMP with bounded splitting. Consider a model of TE
with ECMP in which, to reflect the limitations of today’s
routers’ static hash functions used for ECMP, a router
can only split traffic to a destination between a bounded
number of links. What can be said about the provable
guarantees of TE with ECMP in this model?

REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, 2010, p. 19.

[2] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm,
document RFC 2992, IETF, 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2992.txt

[3] J. Moy, OSPF Version 2, document RFC 2328, IETF, 1998. [Online].
Available: http://www.ietf.org/rfc/rfc2328.txt.

[4] Z. Cao, Z. Wang, and E. W. Zegura, “Performance of hashing-based
schemes for internet load balancing,” in Proc. IEEE INFOCOM, vol. 1.
Mar. 2000, pp. 332–341.

[5] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with tra-
ditional IP routing protocols,” IEEE Commun. Mag., vol. 40, no. 10,
pp. 118–124, Oct. 2002.

[6] A. G. Greenberg et al., “VL2: A scalable and flexible data center
network,” Commun. ACM, vol. 54, no. 3, pp. 95–104, Mar. 2011.

[7] Cisco. (2011). OSPF Design Guide. [Online]. Available: http://www.
cisco.com/image/gif/paws/7039/1.pdf

[8] B. Fortz and M. Thorup, “Internet traffic engineering by optimiz-
ing OSPF weights,” in Proc. IEEE INFOCOM, vol. 2. Mar. 2000,
pp. 519–528.

[9] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing
world,” IEEE J. Sel. A. Commun., vol. 20, no. 4, pp. 756–767, May 2006.

[10] B. Fortz and M. Thorup, “Increasing internet capacity using local
search,” Comput. Optim. Appl., vol. 29, no. 1, pp. 13–48, Oct. 2004.

[11] J. R. Lee and A. Naor, “Embedding the diamond graph in LP and
dimension reduction in L1,” Geometric Funct. Anal., vol. 14, no. 4,
pp. 745–747, Aug. 2004.

[12] C. Guo et al., “BCube: A high performance, server-centric network
architecture for modular data centers,” in Proc. SIGCOMM, 2009,
pp. 63–74.

[13] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “MDCube: A high
performance network structure for modular data center interconnection,”
in Proc. CoNEXT, 2009, pp. 25–36.

[14] A. A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 2130–2138.

[15] A. R. Curtis et al., “DevoFlow: Scaling flow management for high-
performance networks,” in Proc. SIGCOMM, Aug. 2011, pp. 254–265.

[16] M. Chiesa, G. Kindler, and M. Schapira. Traffic Engineering With
ECMP: An Algorithmic Perspective, accessed on Oct. 4, 2016.
[Online]. Available: http://www.dia.uniroma3.it/compunet/www/docs/
chiesa/ecmp.pdf

[17] A. Sridharan, R. Guérin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM
Trans. Netw., vol. 13, no. 2, pp. 234–247, Apr. 2005.

[18] J. Håstad, “Some optimal inapproximability results,” J. ACM, vol. 48,
no. 4, pp. 798–859, 2001.

[19] M. Bellare, O. Goldreich, and M. Sudan, “Free bits, pcps, and
nonapproximability—Towards tight results,” SIAM J. Comput., vol. 27,
no. 3, pp. 804–915, 1996.

[20] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[21] X. Yuan, W. Nienaber, Z. Duan, and R. Melhem, “Oblivious routing for
fat-tree based system area networks with uncertain traffic demands,” in
Proc. SIGMETRICS, 2007, pp. 337–348.

[22] I. Holyer, “The NP-completeness of Edge-coloring,” SIAM J. Comput.,
vol. 10, no. 4, pp. 718–720, 1981.

[23] Source Code for Comparison Among ECMP, Equilibrium, and
Hedera-SA, accessed on Oct. 04, 2016. [Online]. Available:
http://www.github.com/marchiesa/equilibrium-data-center

[24] A. Altin, B. Fortz, and H. Ümit, “Oblivious OSPF routing with weight
optimization under polyhedral demand uncertainty,” Networks, vol. 60,
no. 2, pp. 132–139, Sep. 2012.

[25] J. Rexford, “Route optimization in IP networks,” in Handbook of
Optimization in Telecommunications. Boston, MA, USA: Springer, 2006.

[26] P. Siripongwutikorn, S. Banerjee, and D. Tipper, “A survey of adaptive
bandwidth control algorithms,” IEEE Commun. Surveys Tuts., vol. 5,
no. 1, pp. 14–26, 3rd Quart., 2003.

[27] A. Parmar, S. Ahmed, and J. Sokol, “An integer programming approach
to the OSPF weight setting problem,” School Ind. Syst. Eng., Georgia
Inst. Technol., Atlanta, GA, USA, Tech. Rep., 2006. [Online]. Available:
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1081

[28] L. S. Buriol, M. G. C. Resende, C. C. Ribeiro, and M. Thorup, “A
memetic algorithm for OSPF routing,” in Proc. 6th INFORMS Telecom,
2002, pp. 187–188

[29] M. Ericsson, M. G. C. Resende, and P. M. Pardalos, “A genetic algorithm
for the weight setting problem in OSPF routing,” J. Combinat. Optim.,
vol. 6, no. 3, pp. 299–333, Sep. 2002.

[30] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann, 2003.

[31] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: Topology, routing, and packaging of efficient large-scale
networks,” in Proc. SC, 2009, Art. no. 41.

[32] J. Cao et al., “Per-packet load-balanced, low-latency routing
for clos-based data center networks,” in Proc. CoNEXT, 2013,
pp. 49–60.

[33] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar, “Approximation
algorithms for the unsplittable flow problem,” in Proc. APPROX, 2002,
pp. 51–66.

[34] W. Wang et al., “Freeway: Adaptively isolating the elephant and mice
flows on different transmission paths,” in Proc. IEEE ICNP, Oct. 2014,
pp. 362–367.

[35] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in Proc. NSDI, 2012, pp. 225–238.

Marco Chiesa received the Ph.D. degree in com-
puter science from Roma Tre University in 2014. He
is currently a Post-Doctoral Researcher at the Insti-
tute of Information and Communication Technolo-
gies, Electronics, and Applied Mathematics, Univer-
sité catholique de Louvain, Belgium. His research
interests include Internet routing optimization, pri-
vacy, and security.

Guy Kindler received the B.Sc. degree in mathe-
matics and computer science and the Ph.D. degree
in computer science from Tel Aviv University, in
1997 and 2003, respectively. He was a Post-Doctoral
Researcher at the Weizmann Institute, Microsoft
Research Theory Group, Institute for Advanced
Study, and DIMACS. He is currently an Asso-
ciate Professor with the School of Computer Sci-
ence and Engineering, The Hebrew University of
Jerusalem. His research focuses on harmonic analy-
sis of Boolean functions, hardness of approximation,

and complexity theory.

Michael Schapira received the B.Sc. degree in
mathematics and computer science, the B.A. degree
in humanities, and the Ph.D. degree in computer
science from The Hebrew University in 2004, 2004,
and 2008, respectively. He was a Visiting Scien-
tist with Google NYC’s Infrastructure Networking
Group and a Post-Doctoral Researcher at the Uni-
versity of California, Berkeley, Yale University, and
Princeton University. He is currently an Associate
Professor with the School of Computer Science and
Engineering, The Hebrew University of Jerusalem.

His research focuses on the design and analysis of network architectures and
protocols. He is a recipient of the the Microsoft Research Faculty Fellowship,
the IETF/IRTF Applied Networking Research Prize, and an ERC Starting
Grant.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

