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Abstract— Fast reroute and other forms of immediate failover
have long been used to recover from certain classes of failures
without invoking the network control plane. While the set of
such techniques is growing, the level of resiliency to failures
that this approach can provide is not adequately understood.
In this paper, we embarked upon a systematic algorithmic study
of the resiliency of forwarding tables in a variety of models
(i.e., deterministic/probabilistic routing, with packet-header-
rewriting, with packet-duplication). Our results show that the
resiliency of a routing scheme depends on the “connectivity” k
of a network, i.e., the minimum number of link deletions that
partition a network. We complement our theoretical result with
extensive simulations. We show that resiliency to four simulta-
neous link failures, with limited path stretch, can be achieved
without any packet modification/duplication or randomization.
Furthermore, our routing schemes provide resiliency against
k − 1 failures, with limited path stretch, by storing log(k) bits
in the packet header, with limited packet duplication, or with
randomized forwarding technique.

Index Terms— Computers and information processing, com-
puter networks, computer network management, disruption tol-
erant networking, reliability, robustness.

I. INTRODUCTION

Routing on the Internet (both within an organizational
network and between such networks) typically involves com-
puting a set of destination-based routing tables (i.e., tables that
map the destination IP address of a packet to an outgoing link).
Whenever a link or node fails, routing tables are recomputed
by invoking the routing protocol to run again (or having it
run periodically, independent of failures). This produces well-
formed routing tables, but results in relatively long outages
after failures as the protocol is recomputing routes.
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As critical applications began to rely on the Internet, such
outages became unacceptable. As a result, “fast failover” tech-
niques have been employed to facilitate immediate recovery
from failures.1 The most well-known of these is Fast Reroute
in MPLS where, upon a link failure, packets are sent along
a precomputed alternate path without waiting for the global
recomputation of routes [1]. This, and other similar forms
of fast failover thus enable rapid response to failures but are
limited to the set of precomputed alternate paths.

The fundamental question is, then, how resilient can
forwarding tables be? That is, how many link failures can
failover routing tolerate before connectivity is interrupted
(i.e., packets are trapped in a forwarding loop, or hit a
dead end) without invoking the control plane? The answer
to this question depends on (1) the number of failures
the forwarding scheme should withstand (e.g., resiliency
to multiple simultaneous link failures is crucial in overlay
networks over optical backbone networks [2], [3]), (2) the
structural properties of the network graph (e.g., in terms of
connectivity), and (3) the limitations imposed on the routing
scheme (e.g., with/without packet marking).

The goal of this paper is to shed light on the theoretical
guarantees that are achievable by any failover forwarding table
and leverage these insights to devise better, more resilient,
immediate failover schemes. We only consider link failures,
not vertex failures (which are not always detectable by
neighboring routers, so such fast resilient routing techniques
may not apply).

We distinguish between static routing tables and dynamic
routing tables. While dynamically and adaptively changing
the forwarding tables at a router in response to link failures
can achieve high resiliency (see, e.g., link reversal [6]–[8]),
current routing protocols and infrastructure do not support
such stateful failover routing. Our focus is hence on static,
OpenFlow-like [9], failover routing, where a router/switch
matches packet headers to forwarding rules.

First, we observe that designing static routing tables that are
robust to multiple failures is a relatively simple task when the
forwarding decisions can rely on both the source and destina-
tion of the packet. Unfortunately, the number of forwarding
entries grows quadratically with the size of the network.
We seek “scalable” static failover schemes that rely on lim-
ited, locally-available information, specifically: the destination
address, the packet’s incoming link, and the set of non-failed

1By “immediately”, we mean that there is no control plane delay, but the fast
failover can only happen after (a) the failure is detected and (b) the router
can update its routing table to use the backup route. These delays depend
on the technology used for failure detection and table management, so the
resulting delays can vary substantially, but typically are much less than the
time it takes for the control plane to reconverge.
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TABLE I

SUMMARY OF THE RESILIENCY OF ROUTING TABLES FOR ARBITRARY TOPOLOGIES

links incident to the router. We note that per-incoming-link
destination-based forwarding tables are a necessity as
destination-based routing alone is unable to achieve robustness
against even a single link failure [10], (and, moreover, entails
computationally hard challenges [3], [10]–[12]).

We investigate four models of “scalable” static failover
routing: basic routing, routing with packet-header rewriting,
routing with packet-duplication, and probabilistic routing.
We present, for each of these four models, new immediate
failover schemes with provably improved resiliency over past
approaches. Our results are summarized in Table I. We exper-
imentally compare these schemes. Our findings show that
a high level of resiliency is achievable even with no/little
rewriting of packet headers.

Basic (BSC) Failover Routing (2nd Row): each packet
is matched to an outgoing port only on the destination
address, the incoming link, and the set of non-failed links.
Past work [13], [14] (1) achieved guaranteed robustness
against only a single link/node failure [15]–[20], (2) achieved
robustness against �k

2 − 1� link failures for k-connected
networks [2], and (3) proved that resiliency to any set of link
failures [16] cannot be achieved.

We show that resiliency to multiple link failures can be
accomplished even through basic failover routing. We show
how to generate static forwarding tables that are resilient to
any k−1 failures for a broad variety of k-connected networks,
including full-meshes, generalized hypercubes (proposed as
datacenter topologies in [21]), and Clos networks (today’s
datacenter topologies). Motivated by these results, we make
the following general conjecture:

Conjecture: For any k-connected graph, basic failover rout-
ing can be resilient to any k − 1 failures.

We take a first step in this direction by proving that for any
network that is k-connected for k ≤ 5, the above statement
holds. We present several negative results, e.g., for natural
forms of basic failover routing.

Failover Routing With Packet-Header Rewriting (HDR, 3rd
Row): a node has an ability to rewrite any bit in the packet
header. Clearly, if it is possible to store an arbitrary amount
of information in the packet header, perfect resiliency can
be achieved by collecting information about every failed link
that a packet encounters [4], [5]. Such approaches are not
feasibly deployable in modern-day networks as the header of
a packet may be too large for today’s routing tables. More

recent results show that for any k-connected network, k bits
are sufficient to compute forwarding tables that are robust to
(k − 1) link failures [2]. Our focus is thus on failover routing
schemes that involve only minimal rewriting of bits in the
packet header, or even no rewriting whatsoever. We show that
the ability to modify at most three bits suffices to provide the
same level of resiliency.

Failover Routing With Packet Duplication (DPL, 4th Row): a
node has an ability to duplicate a packet (without rewriting its
header) and send the copies through deterministically chosen
outgoing links. We show how to compute, for any k-connected
network, resilient routing tables that do not create more than
2f duplicates of a packet, where f is the number of failed
links hit by a packet. (So, in particular, if there is no link
failure, no packet duplication occurs.)

Randomized Failover Routing (RND, 5th Row): as above, but
the outgoing edge is chosen in a probabilistic manner. Observe
that, in principle, in this model, even selecting an (active)
outgoing edge uniformly at random achieves perfect resiliency.
However, the expected delivery time of a packet, even if
there was no link failures, would be very large – as large
as Ω(mn) in some network topologies. Instead, we present
a randomized protocol that guarantees the expected delivery
time to be significantly improved and gracefully growing with
the number of actual link failures.

Comparing The Four Schemes: We experimentally evaluate
the four proposed schemes both in terms of resiliency and
in terms of path lengths (stretch). Our main conclusions are
that (1) our positive results for the basic failover technique
(which does not involve bit rewriting in the packet header)
come with an average stretch of only 10%, and (2) for any
k-connected network, the ability to rewrite only log(k) bits is
sufficient to be resilient against k − 1 link failures with only
a small stretch compared to the technique that uses k bits.
Hence, a high level of resiliency is achievable with little/no
bit rewriting and without the overheads associated with packet
duplication.

A. Organization

In Section II, we introduce our routing model and formally
state the STATIC-ROUTING-RESILIENCY problem. Section III

2Our probabilistic method significantly outperforms a random walk in both
the number of random bits it uses and the number of links it traverses to
deliver a packet to the destination.
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provides related work overview. In Section IV, we summarize
routing techniques that will be leveraged throughout the whole
paper. Section V is devoted to our main resiliency results
for basic routing. Then, in Section VI and Section VII, we
show that robustness to (k − 1) link failures, where k is
the connectivity of a graph, can be achieved through the
rewriting of packet header, or if the packet can be duplicated,
respectively. Section VIII is devoted to designing an algorithm
that, for any k-connected graph, computes probabilistic routing
functions that are robust to k−1 link failures and have bounded
expected delivery time. We present the experimental evaluation
of our failover schemes in Section IX. Certain impossibility
results are presented in Section X. Finally, we conclude by
Section XI.

II. MODEL

We represent the network as an undirected multigraph
G = (V, E), where each router in the network is modeled by
a vertex in V and each link between two routers is modeled
by an undirected edge in the multiset E. We denote an
(undirected) edge between x and y by {x, y}. Each vertex v
routes packets according to a forwarding function that matches
an incoming packet to a sequence of forwarding actions.
Packet matching is performed according to the set of active
(non-failed) edges incident at v, the incoming edge, and any
information stored in the packet header (e.g., destination label,
extra bits), which are all information that are locally available
at a vertex. Since our focus is on per-destination forwarding
functions, we assume that there exists a unique destination
d ∈ V to which every other vertex wishes to send packets
and, therefore, that the destination label is not included is
the header of a packet. Forwarding actions consist of routing
packets through an outgoing edge, rewriting some bits in the
packet header, and creating duplicates of a packet.

In this paper we consider four different types of forwarding
functions. We first explore a particularly simple forwarding
function, which we call basic routing (BSC). In basic routing
(Section V) a packet is forwarded to a specific outgoing
edge based only on the incoming port and the set of active
outgoing edges. The other two forwarding functions, which
are generalization of BSC are the following ones: probabilistic
routing, in which a vertex forwards a packet through an
outgoing edge with a certain probability, header-rewriting
routing, in which a vertex rewrites the header of a packet,
and duplication routing, in which a vertex creates copies of
a packet. Basic routing is a special case of each of these
forwarding functions.

We present the formal definitions of the probabilistic,
header-rewriting and duplication routing models in Section VI
and Section VII, respectively.

The STATIC-ROUTING-RESILIENCY (SRR) Problem:
Given a graph G, a forwarding function f is c-resilient if,
for each vertex v ∈ V , a packet originated at v and routed
according to f reaches its destination d as long as at most c
edges fail and there still exists a path between v and d. The
input of the SRR problem is a graph G, a destination d ∈ V ,
and an integer c > 0, and the goal is to compute a set of

resilient forwarding functions that is c-resilient. In this paper
we investigate the relationship between the resiliency that
can be achieved by static routing tables and the connectivity
of a graph. We say a graph is k-connected if there exist k
edge-disjoint paths between any pair of vertices in the graph.
We now intuitively introduce our main routing techniques.

III. RELATED WORK

There is a huge body of literature on related topics, and
here we give only a high-level overview. We make several
distinctions among the studies satisfying these requirements;
the first is whether the routing algorithm can rewrite packet
headers (inserting/modifying additional state). This category
includes [2], [4], [22]–[34] and the general thrust of these
results (with some variation) is that adding one or a few
additional bits (or tunnels) can achieve resiliency to one or two
link failures, whereas one can achieve resiliency to k− 1 link
failures with k bits. When one allows an unlimited list of failed
node/links in the packet header, [4] and [5] deliver packets as
long as the network remains connected. The next category
involves solutions that do not modify the packet header, and
here we can further distinguish between solutions that modify
the forwarding tables based on packet arrivals, and those
that have static tables. The dynamic approaches can deliver
packets whenever the network remains connected [7], [8].
Among the static approaches, some depend only on the
destination address, and some also depend on the incoming
port. The former are guaranteed to deliver packets under any
arbitrary non-disconnecting set of failures only if the routing
tables are not deterministic, otherwise, for deterministic static
routing tables, not only the problem of protecting against one
single failure may not admit a solution, but it is even hard to
compute routing tables that maximize the number of vertices
that are protected [3], [10]–[12]. The latter (i.e., per-incoming
port static deterministic routing tables) exploit the incoming
port of a packet to infer what links have failed. Our work
belongs to this category. We distinguish between approaches
that deterministically chose the outgoing port and those that do
it in a probabilistic manner. Among the former ones, previous
works are limited in several aspects: the proposed heuristics
have no provable failover guarantees [13], [14]; failover mech-
anisms have limited guaranteed resilience against only one
single link/node failure [15]–[20] or resiliency to �k

2 − 1�
link failures for k-connected graphs [2]; routing focus limited
to shortest-path-IP [13], [31], [32]; impossibility of achieving
resiliency to any arbitrary number of link failures [16]. For
specific topologies, works [35], [36] achieve resiliency to
k − 1 link failures but no general methodology is described.
In contrast, we show how to compute routing tables that are
robust to k − 1 link failures for arbitrary k-connected graphs,
with k ≤ 5 and we show that resiliency to k link failures
cannot be guaranteed for any k-connected graph with static
routing tables. Most of previous work involved congestion
minimization problems. Valiant [37] proposed a probabilistic
routing scheme with the goal to balance the load of the
underlying network. Since then, that scheme is called Valiant
Load-Balancing (VLB), whose one of the main ingredients is
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Fig. 1. A 4-connected graph with 4 arc-disjoint arborescences.

randomization. VLB was extensively used in designing
networks. Zhang-Shen et al. [38] employed VLB to design
fault-tolerant networks with guaranteed no congestion under
few router or link failures. Greenberg et al. [39] adopt VLB
to reduce volatility of traffic and failure pattern of their data
centers. In [40], Shepherd et al. extend VLB in order to build
cost-effective networks robust to changes in demand patterns.
We use probabilistic routing to reroute along multiple link
failures with limited path stretch. Another line of work [41]
proves that in any network with k link failures any shortest
path can be constructed by concatenating at most k + 1
shortest paths of the original network. Furthermore, the authors
provided a way to leverage that result to restore shortest
paths in MPLS routing whenever multiple failures occur in
the network.

IV. GENERAL ROUTING TECHNIQUES

As in [2], we leverage a well-known result from graph
theory [42], which allows us to decompose any k-connected
graph in a set of k directed spanning trees (rooted at the
same vertex) such that no pair of spanning trees shares an
edge in the same direction. As an example, consider Fig. 1,
in which each pair of vertices is connected by two edges
(ignore the red crosses) and four arc-disjoint arborescences
Blue,Orange,Red, and Green are depicted by colored
arrows of different styles (normal, dashed, dotted, and dash-
dotted respectively). Efficient fast algorithms to compute such
arborescences can be found in [43]. We now show the main
techniques that we use to route along these arborescences.

Arborescence-Based Routing: Throughout the paper, unless
specified otherwise, we let T = {T1, . . . , Tk} denote a set of k
arc-disjoint spanning arborescences of G rooted at a common
destination vertex. All our routing techniques are based on a
decomposition of G into T . We say that a packet is routed
in canonical mode along an arborescence T if a packet is
routed through the unique directed path of T towards the
destination. If packet hits a failed edge at vertex v along T , it is
processed by v (e.g., duplication, header-rewriting) according
to the capabilities of a specific forwarding function and it is
rerouted along a different arborescence. We call such routing
technique arborescence-based routing. One crucial decision
that must be taken is the next arborescence to be used after a
packet hits a failed edge. In this paper, we propose two natural
choices that represent the building blocks of all our forwarding
functions. When a packet is routed along Ti and it hits a failed
arc (v, u), we consider the following two possible actions:

• Reroute Along the Next Available Arborescence, e.g.,
reroute along Tnext = T(i+1) mod k. Observe that, if the
outgoing arc belonging to Tnext failed, we forward along
the next arborescence, i.e. T(i+2) mod k, and so on.

• Bounce on the Reversed Arborescence, i.e., we reroute
along the arborescence Tnext that contains arc (u, v).

We say that a forwarding function is a circular-arborescence
routing if each vertex can arbitrarily choose the first arbores-
cence to route a packet and, for each Ti ∈ T , we use canonical
routing until a packet hits a failed edge, in which case we
reroute along the next available arborescence. We will show
an example in Section V-A.

To grasp how bouncing enters in our picture for obtaining
k−1 resiliency, consider the following case. Assume that in the
network there are k/2 failed links, such that every single out
of k arborescences contains one of the links. As a reminder,
arborescences that we construct might share links, but not
arcs. So, this example might suggest that there are scenarios
in which already k/2 failed links make all the arborescences
not very useful, and that no algorithm can cope with that.
But, there is a twist. Let k = 2, and T1 and T2 be the
two arborescences and let they share the same failed edge a.
Furthermore, let a be the only failed edge T1 and T2 contain.
If a packet hits a while routed along T1 or T2, then after
bouncing on a the packet will reach d without any further
interruption! So, we have just found a way to resolve a case
in which every arborescence contains one failed link. And,
that is not an isolated scenario.

Motivated by this observation, we introduce the concept of
good arborescence. We say that an arborescence T is good
if bouncing on any failed arc of T the packet reaches d
without any further interruption. We studied the properties of
good arborescences in our recent work [44]. In particular, the
following lemma is shown.

Lemma 1 [44, Lemma 4]: If G contains f < k failed
edges, then T contains at least k − f good arborescences.

In the next sections, we show how it is possible to achieve
different degrees of resiliency by utilizing our general routing
techniques and different forwarding functions (i.e., basic, prob-
abilistic, packet-header-rewriting, and packet-duplication).

V. BASIC ROUTING

In this section we show how to achieve (k − 1)-resiliency
for any arbitrary k-connected graph, with k ≤ 5, using basic
forwarding functions (BSC), which map an incoming edge and
the set of active edges incident at v to an outgoing edge.
This striking result demonstrates that resiliency to multiple
failures can surprisingly be achieved even without invoking the
control plane and without adding any additional information
in the header of a packet. We also show that for several
k-connected graphs (e.g., Clos networks, full-mesh), with arbi-
trary positive k, there exist sets of (k−1)-resilient forwarding
functions.

A. Circular Routing

We first show that circular-arborescence routing is not
sufficient to achieve 3-resiliency. Consider the example in
Fig. 1 with 3 vertices a, b, and c and 6 edges (depicted as
black lines) eA

a,b = {a, b}, eF
a,b = {a, b}, eA

a,d = {a, d},
eF

a,d = {a, d}, eA
b,d = {b, d}, and eF

b,d = {b, d}, where A
stands for “active” edge and F for “failed” edge (depicted

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on July 02,2020 at 12:33:01 UTC from IEEE Xplore.  Restrictions apply. 



CHIESA et al.: ON THE RESILIENCY OF STATIC FORWARDING TABLES 1137

with a red cross over them). Four arc-disjoint arborescences
T = {Blue,Orange,Red,Green} are depicted by colored
arrows. Let < Blue,Orange,Red,Green > be a circular
ordering of the arborescences in T . We now describe how a
packet p originated at a is forwarded throughout the graph
using a circular-arborescence routing. Since eF

a,d is failed, p
cannot be routed along the Blue arborescence. It is then
rerouted through Orange, which also contains a failed edge
eF

a,b incident at a. As a consequence, p is forwarded to b
through the Red arborescence. At this point, p cannot be
forwarded to d because eF

b,d, which belongs to Red, failed. It
is then rerouted through Green, which also contains a failed
edge eF

a,b incident at b. Hence, p is rerouted again through
Blue, which leads p to the initial state—a forwarding loop.

An intuitive explanation is the following one. Since an edge
might be shared by two distinct arborescences, a packet may
hit the same failed edge both when it is routed along the
first arborescence and when it is routed along the second
arborescence. As a consequence, even k

2 failed edges may
suffice to let a packet be rerouted along the same initial vertex
and initial arborescence, creating a forwarding loop. Our first
positive result shows that a forwarding loop cannot arise in
2- and 3-connected graphs if circular-arborescence routing is
adopted.

Theorem 2: For any k-connected graph, with k = 2, 3, any
circular-arborescence routing is (k− 1)-resilient. In addition,
the number of switches between trees is at most 4.

Proof: Consider a 2-connected graph G = (V, E), two
arc-disjoint arborescences T1 and T2 of G, and an arbitrary
failed edge e = {u, v} ∈ E. W.l.o.g, T1 is the first arbores-
cence that is used to route a packet p. When p hits e (w.l.o.g,
at u), p cannot hit e in the opposite direction along T2.
In fact, this would mean that there exists a directed path from
u to v that belongs to T2 and that (v, u) is contained in T2—a
directed cycle.

A similar, but more involved argument, holds for the 3-
connected case. There are 3 arc-disjoint arborescences T1, T2

and T3 of G. W.l.o.g, T1 is the first arborescence that is used
to route a packet p. When p hits a first failed edge e1 it is
switched to be routed along T2. Then it may not hit e1 in other
direction as it would mean that T2 has a loop including edge
e1 which is impossible for a arborescence. Therefore packet
will hit e2 next or be delivired to d. After switching to T3 it
will have to hit e1 in the opposite direction. Next it will have
to hit e2 in the opposite direction while being routed along
T1. Lastly, after switching to T2 packet will not be able to
hit e2 as it will cause a loop in arborescence and it will not
be able to hit e1 as it consists of arcs from T1 and T3 but
not T2. �

B. 4-Connected Graphs

Let us look again at the graph in Fig. 1. It is not hard
to see that a different circular ordering of the arborescences
(i.e., < Blue,Green,Orange,Red >) would be robust to
any three failures. However, our first result shows that in gen-
eral circular-arborescence routing is not sufficient to achieve
(k − 1)-resiliency, for any k ≥ 4.

Theorem 3: There exists a 4-connected graph and a set of k
arc-disjoint arborescences on it, such that there does not exist
any 3-resilient circular-arborescence forwarding function.
Proof Sketch: Consider the 4-connected graph in Fig. 1. There
are total 4! = 24 different circular routings on it. Taking
symmetry into account - only 6 routings have to be considered
(w.l.o.g Blue can be the first in the ordering). For each
possible routing there is a set of failed edges which leads
to forwarding loop. At the beginning of this section we
provided an example of such situation then circular routing is
< Blue,Orange,Red,Green >. Similar failure sets exist
for all 5 remaining orderings but are omitted here due to the
space limitations. �

In the experimental section we show that a naive choice
of the arc-disjoint arborescences will very likely cause a
forwarding loop.

To overcome this, we first introduce the following key
lemma, in which we show how to construct four arc-disjoint
arborescences such that some of them do not share edges with
each other. Then, we compute a circular-arborescence routing
that is 3-resilient based on these arborescences.

Lemma 4: For any 2k-connected graph G, with k ≥ 1, and
any vertex d ∈ V , there exist 2k arc-disjoint arborescences
T1, . . . , T2k rooted at d such that T1, . . . , Tk do not share
edges with each other and Tk+1, . . . , T2k do not share edges
with each other.

We prove this lemma in the appendix. A similar lemma
holds also for any (2k + 1)-connected graph, where k ≥ 0
(see [45] for proof).

Lemma 5: For any 2k + 1-connected graph G, with
k ≥ 1, and any vertex d ∈ V , there exist 2k + 1 arc-disjoint
arborescences T1, . . . , T2k+1 rooted at d such that T1, . . . , Tk

do not share edges with each other and Tk+1, . . . , T2k do not
share edges with each other.

The following theorem states that a circular ordering <
T1, . . . , T4 > of the arborescences constructed as in Lemma 4
is a 3-resilient circular-arborescence routing. We will make
use of the general case of Lemma 4 in Sect. VII.

Theorem 6: For any 4-connected graph, there exists a
circular-arborescence routing that is 3-resilient. In addition,
the number of switches between trees is at most 2f , where f
is the number of failed edges.

Proof: According to lemma 4 there exist arborescenses
T1, T2, T3, T4 s.t. T1 does not share edges with T3, and T2

does not share edges with T4 (not that T2 and T3 are renamed
after application of the lemma). We will now show that circular
routing < T1, T2, T3, T4 > is 3-resilient.

A packet p is routed along T1 (see Fig. 2). It either reaches
the destination vertex d or it hits a failed edge e1 = {a1, b1} at
a1. In the latter case, it is rerouted along T2. It either reaches
d or it hits a failed edge e2 = {a2, b2} at a2. In the latter
case, observe that e1 is a distinct edge from e2, otherwise
if {a1, b1} = {b2, a2}, we have a cycle in T2. Hence, p is
routed along T3. It either reaches d or it hits a failed edge
e3 = {a3, b3} at a3. In the latter case, observe that e3 is a
distinct edge from both e1 and e2, otherwise if {a2, b2} =
{b3, a3}, we have a cycle in T3 and if {a1, b1} = {b3, a3}
then T3 shares an edge with T1—a contradiction. Hence, p is
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Fig. 2. Proof of Theorem 6. Curved lines represent paths in the graph.

routed along T4. It either reaches d or it hits a failed edge e∗ ∈
{{b1, a1}, {b2, a2}, {b3, a3}}. If e∗ = {b3, a3}, T4 contains
a cycle — a contradiction. If e∗ = {b2, a2}, T4 shares an
edge with T2 — a contradiction. Hence, e∗ = {b1, a1} and
p is rerouted along T1. It either reaches d or it hits a failed
edge e′ ∈ {{a1, b1}, {b2, a2}, {b3, a3}}. If e′ = {a1, b1}, T1

contains a cycle — a contradiction. If e′ = {b3, a3}, T1 shares
an edge with T3 — a contradiction. Hence, e′ = {b2, a2} and
p is rerouted along T2. It either reaches d or it hits a failed
edge ē ∈ {{a2, a2}, {b3, a3}}. If ē = {a2, b2}, T2 contains a
cycle — a contradiction. Hence, ē = {b3, a3} and p is rerouted
along T3. It either reaches d or it hits the failed edge {a3, b3},
which is not possible since T3 does not contain a cycle. Hence
p always reaches d and there are at most 2f switches because
they occur only at encountering a failed arc and each failed
edge results in 2 failed arcs. �

C. 5-Connected Graphs

We now leverage our second routing technique, i.e., bounc-
ing a packet along the opposite arborescence when a packet
hits a failed edge. The intuition behind bouncing a packet
is the following one. When we bounce a packet along the
opposite arborescence T , we know that at least one failed
edge that belongs to T is not contained in the path from p to
the destination vertex.

Let T1, . . . , Tk be k arc-disjoint arborescences of �G such
that a circular-arborescence routing based on the first k − 1
arborescences is (c−1)-resilient, with c < k. Let R be a set of
forwarding functions such that: each vertex that originates a
packet p, forwards it along Tk and, if a failed edge is hit along
Tk, then p is routed according to the circular-arborescence
based on the first k − 1 arborescences. Then, we have the
following result.

Lemma 7: The set of forwarding functions R is c-resilient.
Proof: First we route a packet p along Tk. If p hits a

failed edge {x, y} at x, we switch to circular-arborescence
routing based on arborescences T1, . . . , Tk−1 starting from
the arborescence that contains arc (y, x). Suppose, by contra-
diction, that routing is not c-resilient, i.e., a forwarding loop
arises with no more than c link failures. Let ei = (ai, bi), with
i = 1, . . . , r < 2c − 2, be the i’th failed arc hit by a packet
p. Let Ti be the arborescence that contains arc (b1, a1). Two
cases are possible: (i) the forwarding loop hits edge {a1, b1}
or (ii) not.

In case (i), consider the scenario in which only edges
{a2, b2}, . . . , {ar, br} failed (less than c edges in total). If a
packet p is originated by a1 and it is initially routed along
Ti, then it will hit the same failed arcs as a packet in the
assumed forwarding loop and it will eventually hit (b1, a1).
Since this arc is not failed, p will enter a forwarding loop,
which is a contradiction since the circular-arborescence routing
on T1, ..., Tk−1 is (c − 1)-resilient.

Analogously, in case (ii), consider the scenario in which
only edges {a2, b2}, . . . , {ar, br} failed. Since the forwarding
loop does not hit (a1, b1), we have a contradiction since we
assumed that the circular-arborescence routing is (c − 1)-
resilient. Hence, our routing scheme is c-resilient. �

The 4-resiliency for any 5-connected graph now easily
follows from Lemma 7 and Theorem 6:

Theorem 8: For any 5-connected graph G there exist a set
of 4-resilient forwarding functions. In addition, the number of
switches between trees is at most 2f , where f is the number
of failed edges.

Proof: According to lemma 5 there exist arborescenses
T1, T2, T3, T4, T5 s.t. T1 does not share edges with T3, and T2

does not share edges with T4 (not that T2 and T3 are renamed
after application of the lemma).

Note that trees T1–T4 are the same as in the proof
of Theorem 6. Therefore circular-arborescence on them is
3-resilient. Now from lemma 7 it follows that there is a
4-resilient routing scheme consisting of routing on T5 until
first failure is reached, then bouncing and performing circular
routing afterwards. �

Since every planar graph with no parallel edges is at most
5-connected [46], the following corollary easily follows.

Corollary 9: For any k-connected planar graph with no
parallel edges there exist a set of (k− 1)-resilient forwarding
functions.

The following theorem shows that a certain level of
resiliency can be achieved by simply using circular-
arborescence routing.

Theorem 10: For any k-connected graph there exist a set
of �k

2 �-resilient forwarding functions.
Proof: It easily follows from Lemma 7 and the fact that

every circular-arborescence routing is (�k
2 � − 1)-resilient. �

Constrained Topologies: For several graph topologies that
are common in Internet routing or datacenter networks, we
show that (k − 1)-resilient forwarding functions can be com-
puted in polynomial time. The list of graphs that admit (k−1)-
resilient forwarding functions encompasses cliques, complete
bipartite graphs, generalized hypercubes, Clos networks, and
grids [21], [46], [47]. We refer the reader to [45] for further
details.

Avoiding Loops for Arbitrary Number of Failures: Observe
that a packet may easily enter a forwarding loop when it is
routed with circular-arborescence routing. In fact, if a packet
has to be routed more than once through the same arborescence
in order to reach the destination, a switch cannot distinguish
whether that packet was already routed on that arborescence.
This means that, if there are more failures than those that
can be tolerated, a forwarding loop may be created. This
is the case for the routing algorithms that we described so
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Algorithm 1 Definition of HDR-LOG-K-BITS

HDR-LOG-K-BITS: Given T = {T1, . . . , Tk} and d 1.

1) Let Ti be the first tree that is used to route a packet.
2) Set currcirc := i.
3) Repeat until the packet is delivered to d a.

a) Route along Ti until d is reached or the routing
hits a failed edge.

b) If the routing hits a failed edge a and a is shared
with arborescence Tj . (i)

i) If currcirc �= i, let currcirc := (currcirc+1)
mod k + 1 and i := currcirc.

ii) Otherwise, let i := j.

far, where a packet can be routed more than once through
the same arborescence. To avoid forwarding loops for any
arbitrary number of failures, without guaranteeing to deliver
a packet to the destination with more than k − 1 failures, it
is necessary to add only two extra bits in the packet header,
so that a switch can detect whether a packet is being routed
more than once through the same arborescence. The idea is to
leverage the two extra bits to count how many times a packet
has been routed through a specific arborescence, e.g., T1. Since
our routing techniques do not route more than two times on
each arborescence, once our two-bits counter reaches a value
of 3, a packet can be dropped since it implies that more than
k − 1 links failed in the network.

VI. PACKET HEADER REWRITING

We devote this section to algorithms that rewrite a very
limited number of bits in the packet header in order to achieve
(k−1)-resiliency, and present two such algorithms, approached
in mutually different ways. The first algorithm uses �log k	
and the second one uses only 3 bits in the packet header. As
depicted in Table I, concerning the number of bits allocated
in the packet header, both algorithms substantially improve
upon the previous work. Our experiments, that we present in
Section IX, suggest that the algorithm that uses only �log k	
bits is of a high practical relevance.

Algorithm 1 (HDR-LOG-K-BITS) requires only �log k	
bits in the packet header as it simply needs to store variable
currcirc. Variable i is not stored in the packet header but is
inferred from the incoming arc on which the packet is received.
The correctness of Algorithm HDR-LOG-K-BITS is based
upon Lemma 1, i.e., there exists at least one good arborescence
even if k−1 links fail. Intuitively, HDR-LOG-K-BITS attempt
to route a packet p through each arborescence in a circular
order. The current arborescence traversed by a packet in the
circular order is stored in currcirc. Whenever a failed link is
hit, a bounce operation is performed. Two cases are possible:
a packet is rerouted on a good arborescence or not. In the
former case, by definition of good arborescences, the packet
is correctly delivered to the destination without hitting any
further failed link. In the latter case, the packet will hit a failed
link while being routed through the bounced arborescence,
In that case, HDR-LOG-K-BITS checks the value stored in

Algorithm 2 Definition of HDR-3-BITS

HDR-3-BITS: Given T = {T1, . . . , Tk} and d 1.

1) Set i := 1.
2) Repeat until the packet is delivered to d 1.

a) Route along Ti until d is reached or the routing
hits a failed edge.

b) If the routing hits a failed edge a and a is shared
with arborescence Tj , i �= j. (a)

i) Bounce and route along DFS traversal in Tj .
ii) If the routing hits a failed edge in Tj , route

back to the edge a.

c) Set i := (i + 1) mod k + 1

currcirc and it reroutes p on the next arborescence in the
circular order. As such, HDR-LOG-K-BITS guarantees that
packet is eventually routed and bounced on each arborescence,
eventually on the good one.

Algorithm HDR-3-BITS (Alg. 2) requires only 3 bits in the
packet header to construct a set of (k−1)-resilient forwarding
functions. This algorithm extends Alg. 1 and consists of
routing a packet in three phases. HDR-3-BITS attempts to
route a packet p along each arborescence in a circular order
(Phase 1). Whenever p hits a failed link l while being routed
along an arborescence T , HDR-3-BITS reroutes p on the
bounced arborescence that shares link l with T (Phase 2). In
this phase, HDR-3-BITS routes p through a “traversal visit” of
the bounced arborescence. A traversal visit of an arborescence
is a cycle that traverses each vertex in the graph and does not
traverse a link in the same direction twice. A traversal visit can
be computed with a simple Depth-First-Search algorithm. If p
does not reach the destination vertex, then it must hit a failed
link l′ on the bounced arborescence. In that case, since p does
not contain an identifier of the last arborescence used in the
circular order, HDR-3-BITS performs a “back-tracking” oper-
ation that consists in rerouting p backwards on the bounced
arborescence using a reversed traversal visit until link l is hit
again (Phase 3). When this happens, HDR-3-BITS determines
that p was being routed on the T since the bounced arbores-
cences shares l with T . It therefore reroutes p on the successor
of T in the circular order of the arborescences (Phase 1 again).
Two bits in the packet header are used to keep track of the
routing phase. Each time a packet is received from a link, the
third bit is used to distinguish on which of the two arbores-
cences that packet is currently being routed. Due to the space
limitations we refer readers to [48] for details and proofs.

VII. PACKET DUPLICATION

In this section we show that, for any k-connected graph G,
it is always possible to compute duplication forwarding func-
tions (DPL) that are (k − 1)-resilient. DPL maps an incoming
edge and the set of active edges incident at v to a subset of
the outgoing edges at v. A packet is duplicated at v and one
copy is sent to each of the edges in that set.

A naive approach would flood the whole network with
copies of the same packets, i.e., each vertex creates a copy of
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Algorithm 3 Definition of DPL-ALGO

1) p is first routed along T1.
2) p is routed along the same arborescence towards the

destination, unless a failed edge is hit.
3) if p hits a failed edge (x, y) along Ti, then:

a) if i < s: one copy of p is created; the original
packet is forwarded along Ti+1; the copy is for-
warded along Tl, where Tl is the arborescence that
contains arc (y, x).

b) if i = s: s− 1 copies of p are created; the original
packet is forwarded along Ts+1; the j’th copy, with
1 ≤ j ≤ s − 1, is routed along Ts+j+1.

c) if i > s: p is destroyed.

a packet for each outgoing edge and forwards it through that
edge. There are two drawbacks to this approach. First, marking
packets is necessary to avoid forwarding loops. Second, at least
a copy of the packet will be routed through each edge, wasting
routing resources. In the following, we present an algorithm
that creates a very limited number of copies of a packet and
guarantees robustness against any k − 1 edge failures.

The general idea is to carefully combine the benefits of
both circular-arborescence and bounce routing (as for HDR
routing in Sect. VI). Circular-arborescence routing allows us
to visit each arborescence, while bouncing a packet allows us
to discover well-bouncing arcs (see Sect. VI for the definition
of well-bouncing arcs). Bouncing packets comes at the risk
of easily introducing forwarding loops as packets may be
bounced between just two arborescences. Hence, we leverage
our construction of arborescences from Lemma 4, which helps
us to eventually hit k − 1 distinct failed edges, and we
forbid any bouncing that may create a forwarding loop. For
simplicity, we assume that k = 2s is even.

Let G be a 2s-connected graph and T1, . . . , T2s be 2s arc-
disjoint arborescences such that T1, . . . , Ts (Ts+1, . . . , T2s) do
not share edges with each other (as in Lemma 4). We define
the DPL-ALGO in Alg. 3 and in the following show that it
provides a set of (2s − 1)-resilient forwarding functions.

We start by observing that each failed edge hit along the
first s arborescences cannot be a well-bouncing arc, otherwise
this would mean that at least a copy of a packet will reach d.

Lemma 11: Let Ti be a good arborescence. If DPL-ALGO

fails to deliver a packet to d, then i > s.
Proof: If the statement would not be true, then the

algorithm would route the packet to the destination using
Step 3a. �

Theorem 12: For any 2s-connected graph and s ≥ 1, DPL-
ALGO computes (2s − 1)-resilient forwarding functions. In
addition, the number of copies of a packet created by the
algorithm is f , if f < s, and 2s − 1 otherwise, where f
is the number of failed edges.

Proof: Suppose that DPL-ALGO fails to deliver a packet
to d. Step 3a guarantees that the algorithm will route the packet
along each Ti, with 1 ≤ i ≤ s, and, since it fails, each Ti,
1 ≤ i ≤ s, must contains an arc that belongs to a failed edge.
Step 3b guarantees that the algorithm will route the packet

along each Ti, with k < i ≤ 2s, and, since it fails, each Ti,
s < i ≤ 2s, must contains an arc that belongs to a failed
edge. Therefore, each Ti contains an arc that belongs to a
failed edge.

This trivially implies that each Ti has a good failed arc.
By Lemma 11 and since in our construction Ts+1, . . . , T2s

do not share failed edges, we have that failed edges that
the algorithm approaches in T1, . . . , Ts (s many of them)
are disjoint from all the good failed arcs of Ts+1, . . . , T2s

(s many of them) otherwise at least a copy of a packet would
reach d. Therefore there are at least 2s failed edges which is
a contradiction.

Number of created copies can be counted trivially: if f < s
then step 3b will never be executed and one copy of packet
will be created for each failure encountered at step 3a. Copies
are created only while failure is encountered at Ti for i ≤ s.
As copies are all sent on Tj for j > s there will be no more
than 2s − 1 copies in total. �

Routing From any Arbitrary Initial Arborescence: In con-
trast to the BSC and HDR forwarding techniques, in DPL-
ALGO each vertex is forced to start routing packets on the
same initial arborescence T1. This approach has one main
drawback: even in the absence of link failures, routing is
constrained along an arborescence, which may not even be
a shortest path arborescence. This leads to unacceptable high
path lengths. We solve this issue by adding a counter with
�log(s)	 bits in the packet header. We initially set the counter
to 0 and we increase it every time a packet hits a failed edge.
If the counter is smaller than s, we apply step 3a from Alg. 3,
otherwise, if the counter is equal to s, we apply step 3b.
We do not use the counter when we route along any arbores-
cence Ti, with i > s. Evaluating this version of the algorithm
in Section IX, we show that it achieves high resiliency with
very limited stretch. We call this algorithm DPL-LOG-K-
BITS.

VIII. RANDOMIZED ROUTING

In this section, we devise a set of routing functions for
G that is (k − 1)-resilient but requires a source of random
bits. We extend our routing function definition, which we call
randomized routing (RND), as follows: a routing function maps
an incoming edge and the set of active edges incident at v to
a set of pairs (e, q), where e is an outgoing edge and q is
the probability of forwarding a packet through e. A packet is
forwarded through a unique outgoing edge.

Algorithm 4 constructs a set of (k−1)-resilient randomized
routing functions, which we call BOUNCED-RAND-ALGO.

A Sketch of Correctness: Assume that we, magically, know
whether the arborescence we are routing along is a good
one or not. Then, on a failed edge we could bounce if the
arborescence is good, or switch to the next arborescence
otherwise. And, we would not even need any randomness.
However, we do not really know whether an arborescence
is good or not since we do not know which edges will fail.
To alleviate this lack of information we use a random guess.
So, each time we hit a failed edge we take a guess that the
arborescence is good, where the parameter q estimates our
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Algorithm 4 Definition of BOUNCED-RAND-ALGO

BOUNCED-RAND-ALGO: Given T = {T1, . . . , Tk} 1.

1) T := an arborescence from T sampled uniformly at
random (u.a.r.)

2) While d is not reached 1.

a) Route along T (canonical mode)
b) If a failed edge is hit then (a)

i) With probability 1/2, replace T by an arbores-
cence from T sampled u.a.r.

ii) Otherwise, bounce the failed edge and update
T correspondingly

likelihood. Notice that BOUNCED-RAND-ALGO implements
exactly this approach. As an example, consider Fig. 1. If a
packet originated at a is first routed through Orange and the
corresponding outgoing edge eF

a,b is failed, then the packet
is forwarded with probability q to an arborescence from T
sampled u.a.r. and with probability 1 − q through Green,
which shares the outgoing failed edge eF

a,b with Red.
By leveraging Lemma 1, we can show that BOUNCED-

RAND-ALGO leads to (k−1)-resilient routing with the number
of switches gracefully growing with the number of failed links.

Theorem 13 [44, Th. 11]: Given a k-connected graph G,
destination d and a decomposition of G into k arc-disjoint
arborescences T rooted at d, there exists a (k − 1)-resilient

algorithm that delivers a packet to d after O
(

k
k−f H

)
hops

in expectation, where H is the length of a longest path of
any arborescence of T and f the number of failed edges. The
algorithm uses randomization only when encounetrs a failed
edge. In particular, if f = 0, the algorithm is deterministic.

A. Bouncing is Efficient

It might be tempting to implement a variation of BOUNCED-
RAND-ALGO that on each failed edge switches to another
arborescences chosen uar, i.e. to ignore step 2(b)ii in
Algorithm 4. Let RAND-ALGO denote such a variant. The
following theorem shows that BOUNCED-RAND-ALGO sig-
nificantly outperforms RAND-ALGO. See [44] for a proof.

Theorem 14: For any k > 0, there exists a 2k edge-
connected graph on O(N) vertices and O(k2 + kN) edges,
a set of 2k arc-disjoint spanning trees, and a set of k − 1
failed edges, such that the expected number of tree switches
with RAND-ALGO is Ω(k2). Furthermore, the routing makes
Ω(k2N) hops in expectation.

IX. EXPERIMENTS

We experimentally evaluate the four proposed schemes both
in terms of resiliency and in terms of path lengths (stretch).
Our main conclusions are that (1) our positive results for basic
failover technique (which does not involve marking packets)
come with an average stretch of only 10%, and (2) for any
k-connected network, we show that the ability to rewrite only
�log k	 bits is sufficient to be resilient against k − 1 link
failures with only small stretch compared to the technique
that uses k bits. Hence, a high level of resiliency is achievable

Fig. 3. 4-connected, 3 link failures.

with little/no packet rewriting of bits in the packet header and
without the overheads associated with packet duplication.

First, we assess the effectiveness of the BSC-ALGO, which
is based on a circular-arborescence forwarding function. Recall
that BSC-ALGO is based on a special construction of a set
of arc-disjoint arborescences. We show that an arbitrary set of
arbitrary arc-disjoint arborescences would very likely be prone
to forwarding loops.

Arbitrary Arc-Disjoint Arborescences Are not
3-Resilient: We experimentally quantify the amount of
routers that are no longer able to send packets to a destination
vertex when circular-arborescence is used on an arbitrary
set of arc-disjoint arborescences, Fig. 3. We generate 1000
different 4-connected random networks with sizes ranging
from 10 to 40 vertices. For each network with N routers, we
consider 320 · N random 3-link failures scenarios. We then
count the number of routers that are no longer able to reach
the destination router (i.e., are trapped in a forwarding loop)
in at least one failure scenario. As shown in Fig. 3, roughly
65% of the routers lost connectivity to the destination vertex
in at least one failure scenario. We point out that we are only
providing a lower bound as an exploration of all possible
3-link failures in large networks is computationally unfeasible.
In contrast, our construction of arc-disjoint arborescences
described in Lemma 4 guarantees that no pair of vertices
is disconnected in any 4-connected network for any 3-link
failures.

Path Stretch in the Absence of Failures: In [2] it was
shown that arc-disjoint arborescences have limited stretch with
respect to shortest paths in the absence of link failures. The
authors also observe that, if packet header marking is allowed
by the forwarding function, a single extra bit can be used to
switch to failover routing only when a packet hits a failed link.
Otherwise, a packet is forwarded according to any arbitrary
scheme defined by a network operator (e.g., shortest paths).
We omit the results for the path stretch in the absence of
failures as they are similar to the ones already obtained in [2].

Little/No Bit Rewriting in Packet Header is Sufficient for
High Resiliency and Low Stretches: We use as a point of
reference for our evaluation the algorithm presented in [2],
which uses k bits in the packet header. We define the stretch of
a routing function R as the ratio between the number of links
traversed by algorithm and the number of links traversed by
the algorithm in [2]. We generated 1000 different 4-connected
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Fig. 4. 4-connected, 1 link failure.

Fig. 5. 4-connected, 2 link failures.

Fig. 6. 4-connected, 3 link failures.

random networks with 100 routers. For each network we look
at 3200 random link failures scenarios. In Fig. 4, Fig. 5, and
Fig. 6, we show the cumulative distribution function of the
path stretch from each source vertex to a specific destination
using our four 3-resilient algorithms, i.e., BSC-ALGO, which
routes packets based on a circular-arborescence forwarding
function, HDR-LOG-K-BITS, which rewrites log(k) bits in
the packet header, HDR-3-BITS, which rewrites only 3 bits
in the packet header, and DPL-LOG-K-BITS, which rewrites
log(k) bits in the packet header and possibly creates duplicates
of a packet, for 1, 2, and 3 link failures. We stress the
fact that in all the depicted graphs, we only compute the
stretch for those packets that actually hit at least one failed
link. We first observe that no rewriting of bits in the packet
header (i.e., BSC-ALGO) leads to surprisingly limited average
stretch, i.e., 90% of the packets have stretch smaller than
1.2. While BOUNCED-RAND-ALGO performs similarly to
the deterministic scheme with no packet-header rewriting,
HDR-LOG-K-BITS reduces the average stretch to roughly

Fig. 7. 8-connected, 4 link failures.

Fig. 8. 8-connected, 7 link failures.

1.1. Not surprisingly, DPL-LOG-K-BITS can reduce stretch
much further than our comparison algorithm as it can explore
different paths in the network at the same time.3 Finally, we
observe that the path stretch in HDR-3-BITS is unacceptable
when compared to the other approaches. The main reason is
that packets are not directly routed through the destination
vertex along an arborescence (see Sect. VII). We finally
compare in Fig. 7 and Fig. 8 the performance of the three
other (k−1)-resilient algorithms on 8-connected networks. We
observe a similar trend to the one observed for 4-connected
networks.

X. IMPOSSIBILITY RESULTS FOR BASIC ROUTING

We now show that simplified forms of failover forwarding
functions are not sufficiently powerful. It is well-known that
without matching the incoming-edge it is not even possi-
ble to construct 1-resilient static forwarding functions [10].
To overcome this, [14] suggests to route packets based on a
circular ordering of the edges incident at each vertex. Namely,
a set of forwarding functions is link-circular if each vertex
v routes packets based on an ordered circular sequence <
e1, . . . , el > of its incident edges as follows. If a packet p is
received from an edge ei, then v forwards it along ei+1. If the
outgoing edge ei+1 failed, v forwards p through ei+2, and so
on. We show that this simplified forwarding functions cannot
provably guarantee (k − 1)-resiliency even for 3-connected
graphs.

Theorem 15: There is a 3-connected graph G for which no
2-resilient link-circular forwarding function exists.

3The stretch of DPL-LOG-K-BITS is computed on the first copy of a packet
that reaches the destination.
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Fig. 9. (a) No circular routing functions can guarantee 2-resiliency.
(b) Edge transformation.

Proof: Consider the 3-connected graph shown in Fig. 9(a),
where d is the destination. Suppose, by contradiction, that
there exists a 2-resilient set of circular routing functions.
Since the graph is symmetric, w.l.o.g, assume that o routes
clockwise, i.e., a packet received from x is sent to z, from
z to y, and from y to x. Also, w.l.o.g, o sends its originated
packet p to y when none of its incident edges fail.

We first claim that vertices y, a, and z route counterclock-
wise. Suppose, by contradiction, that (i) y routes clockwise,
or (ii) a routes clockwise, or (iii) z routes clockwise. For each
case, consider the following failure scenarios. In case (i), sup-
pose both edges (a, d) and (z, b) fail. In case (ii), suppose both
edges (y, c) and (z, b) fail. In case (iii), suppose both edges
(y, c) and (a, d) fail. In each case packet p is routed along
(y, a, z, o, y) and a forwarding loop arises—a contradiction.

Observe now that, in the absence of failures, if c sends a
packet p to x, if x routes clockwise it forwards it directly
to b, otherwise, if x routes counterclockwise, p is forwarded
through o, z, a, y, o, x, and, also in this case, to b. Consider
the scenario where both edges (c, d) and (b, d) failed. A packet
p received by y from o is routed from c to x and, because of
the previous observation, to b. After that, it is routed through
(z, o, y) and a forwarding loop arises—a contradiction. �

We now exploit the previous theorem to state another impos-
sibility result, which shows that the connectivity between two
vertices, i.e., the maximum amount of disjoint paths between
the two vertices, does not match the resiliency guarantee for
these two vertices. In other words, even if a vertex v is
k-connected to the destination (but not the entire graph), it
is not possible to guarantee that a packet originated at v will
reach d when k − 1 edges fail. Clearly, if we want to protect
against k− 1 failures a single vertex that is k-connected to d,
we can safely route along its k edge-disjoint paths one after
the other until the packet reaches its destination. However, if
there are more vertices to be protected, it may be not possible
to protect all of them. We say that a forwarding function is
strong-connectivity-resilient if each packet that is originated
by a vertex v that is k-connected to the destination d, can be
routed towards the destination as long as less than k edges
fail. By leveraging Theorem 15 and using a simple graph
transformation we can show that strong-connectivity-resilient
routing functions are not always achievable.

Theorem 16: There are a graph G′ and a destination d
for which no set of strong-connectivity-resilient forwarding
functions exists.

Proof: Consider the 3-connected graph G shown in
Fig. 9(a), where d is the destination. We construct a new graph
G′ from G by applying edge transformations as shown on

Fig. 9(b). Each edge in the original graph is replaced by a
path consisting of three edges. We call the new added vertices
intermediate (depicted as small black circles) and the old ones
original. Each original vertex of G retains its 3-connectivity
to d.

It is easy to see that intermediate vertices must forward a
packet received through one edge to the other one, if it did
not fail. Otherwise, if an intermediate vertex v bounces back
to a vertex u a packet, then if all edges incident at u fail,
except (v, u), a forwarding loop arises. This implies that we
only need to compute routing functions at original vertices.

We now prove that the routing functions at the 8 original
vertices, except d, must be link-circular. Once we prove this,
the statement of the theorem easily follows from Theorem 15,
where we proved that no link-circular routing functions can
guarantee 2-resiliency on G.

From now on, we will consider only failures between two
intermediate vertices, thus a routing table at each original
vertex consists of just four entries: Where to send a packet
received from each of its three neighbors n1, n2, and n3 and
where to send a locally originated packet. We can discard
the last entry as it does not influence if a routing table is
circular. Hence, we simplify our routing table notation as
follows. Let fv(n) = n′ be a routing table at vertex v such
that a packet received from a neighbor n is forwarded to a
neighbor n′.

We make the following observations. First, for each original
vertex v, we have that fv(n) �= n, with n ∈ {n1, n2, n3}
i.e. no vertex bounces a packet back to the edge where it
received it, exactly as in the case of intermediate vertices.
Second, all entries in the routing table are distinct. Otherwise,
suppose by contradiction that, w.l.o.g., fv(n1) = fv(n2) = n3

and fv(n3) = n1. If both n1 and n3 have a dead-end ahead
because of two edge failures, then a forwarding loop among
n3, v, and n1 arises. Hence, the routing function at each vertex
must be link-circular. Since a link-circular routing function at
intermediate vertices consists in forwarding a packet to the
other edge, it easily follows that the same link-circular routing
functions at original vertices are 2-resilient for G. �

We show that there exists a limit on the resiliency that
can be attained in a k-connected graph, in which each vertex
is k-connected to the destination. It was proved in [16] that
resiliency against any failures that do not disconnect a sender
from d cannot be guaranteed. We claim a stronger bound.

Theorem 17: There is a 2-connected graph for which no set
of 2-resilient forwarding functions exists.

Proof: Consider the graph G′ constructed in Theo-
rem 16 (see Fig. 9). This graph is obviously 2-connected.
Any 2-resilient forwarding functions on it are also strong-
connectivity-resilient forwarding functions (because 2-resilient
forwarding functions forward correctly in case of any 2 fail-
ures starting from any vertex, including original 8 vertices).
However, according to Theorem 16 no such routing function
exists. �

XI. CONCLUSIONS

We presented the STATIC-ROUTING-RESILIENCY problem
and explored the power of static fast failover routing in a
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variety of models: deterministic routing, routing with packet-
duplication, routing with packet-header-rewriting, and ran-
domized routing. Our results suggest that even under severe
restrictions on forwarding (no/little rewriting of bits in the
packet header) a high-level of resiliency is achievable with
negligible stretch.

APPENDIX

ARC-DISJOINT ARBORESCENCE CONSTRUCTION

LEMMA 4. For any 2k-connected graph G, with k ≥ 1, and
any vertex d ∈ V , there exist 2k arc-disjoint arborescences
T1, . . . , T2k rooted at d such that T1, . . . , Tk do not share
edges with each other and Tk+1, . . . , T2k do not share edges
with each other.

Proof: It is well known (see [49]) that any undirected
graph G = (V, E) is k-edge-connected if and only if G can
be constructed from the initial graph of two nodes connected
by k parallel edges by the following four operations, which
keep the graph k-connected: (i)

1) add an edge,
2) pinch �k

2 	 edges with a new node z′,
3) pinch �k

2 � edges with a new node z′ and add an edge
connecting z′ with an existing node,

4) pinch �k
2 � edges with a new node z′, pinch then again

in the resulting graph �k
2 � edges with another new node

z so that not all of these �k
2 � edges are incident to z′,

and finally connect z and z′ by a new edge.

In addition, the initial graph can be such that it contains at
least an arbitrary chosen vertex of G.

It is trivial to construct 2k arborescenses with desired
properties for initial graph and it is possible to construct
such arborescenses for the graph obtained at each step using
arborescenses for graph from previous step.

Let G be a k-connected graph, and G′ a graph obtained by
applying operation i–iv. If we are given a list (T1, . . . , Tk) of
arborescences of G, then we can construct a list (T ′

1, . . . , T
′
k)

of arborescences for G′.
Operation i: The addition of an edge does not introduce any

new vertex in G, so we set T ′
i := Ti.

Operation ii and operation iii: Let z′ denote the vertex
added to G in order to obtain G′. Initially, we let T ′

i := Ti, and
then modify each T ′

i , so that (T ′
1, . . . , T

′
k) is a list of ADBED

arborescences of G′, in two phases. In the first phase we alter
each T ′

i that contains a pinched arc, and in the second phase
we modify the remaining ones.

The first phase: For each edge e = {x, y} ∈ (E(G) \
E(G′)), i.e. for each pinched edge, if arc (x, y) belongs to
Ti, let e1 = {x, z′} and e2 = {y, z′} be the two edges that
are split off from G′ in order to obtain e. We then add arcs
(x, z′) and (z′, y) to T ′

i and remove (x, y).
If after the changes any T ′

i is not an arborescence, we
remove outgoing edges at z′ until T ′

i is an arborescence. This
can be done by simply breaking cycles at z′ and removing
multiple paths from z′ to d at z′.

Now, we show some properties of the currently obtained
T ′

1, . . . , T
′
k.

First, observe that z′ has at most one outgoing arc in each
of the arborescences as we remove all the cycles, and parallel
paths from z′ to d.

Second, by the construction of T ′
1, . . . , T

′
k and the properties

of T1, . . . , Tk we have that each edge incident to z′ is shared
by at most one arborescence in {T ′

1, . . . , T
′
� k

2 �
} and at most

one arborescence in {T ′
�k

2 �+1
, . . . , T ′

2�k
2 �
}.

Third, observe that there are at most k/2 incoming arcs
at z′ belonging to T ′

1, . . . , T
′
� k

2 �
(T ′

� k
2 �+1

, . . . , T ′
2� k

2 �
). If it

would not be the case, then it would mean that at least an
edge in E(G′) \E(G) is shared by two arborescences among
T ′

1, . . . , T
′
� k

2 �
(T ′

� k
2 �+1

, . . . , T ′
2� k

2 �
) in G. However, that would

contradict, along with out construction of T ′
1, . . . , T

′
k would

contradict that (T1, . . . , Tk) is ADBED of G.
The second phase: For each arborescence T ′

i that has no
outgoing arcs at z′, we do as follows. W.l.o.g., assume that
i ≤ �k/2�. We add into T an arbitrary outgoing arc at z′ such
that the symmetric incoming arc is not contained in any tree
in {T ′

1, . . . , T
′
� k

2 �
}.

Next, our goal is to argue that there always exists an edge
{x, y} ∈ N(z′) that is not shared by any arborescence in
{T ′

1, . . . , T
′
�k

2 �
}.

Observe that z′ has at least k incident edges. On the other
hand, as we have noted, there exist at most �k/2� incoming
arcs at z′ belonging to T ′

1, . . . , T
′
�k

2 �
and, at most �k

2� − 1
outgoing arcs that belong to T ′

1, . . . , T
′
� k

2 �
. Hence, there exist

at least k − (�k/2� + �k/2� − 1) ≥ 1 edges that are not
shared by any of T ′

1, . . . , T
′
� k

2 �
. This means that there exists

an arc (x, z′) that is not shared by any arborescence among
T ′

1, . . . , T
′
� k

2 �
.

Operation iv: In this case, we have two additional vertices z′

and z. After we pinch at least �k
2 � edges to z′, we do the same

modifications applied for operations ii and iii. Since the degree
of z′ may be k−1 at most one arborescence T ′

h will not have
an outgoing arc at z′. After we pinch at least �k

2� edges to z,
we do the same modifications applied for operations ii and iii.
Since the degree of z may be k− 1 at most one arborescence
T ′

j will not have an outgoing arc at z.
After that, we add an edge between z and z′. W.l.o.g., let

assume that 1 ≤ j ≤ �k
2 �. If j �= h and j ≤ �k

2� < h, we can
safely add arc (z, z′) into T ′

j and arc (z′, z) into T ′
h.

If j = h, we cannot add both arcs (z, z′) and (z′, z) into T ′
j ,

because it induces a cycle. We therefore consider an arbitrary
arborescence T ′

f , where 1 ≤ f �= j ≤ �k
2�. We add either

(z, z′) or (z′, z) into T ′
f in such a way that T ′

f is a directed
acyclic graph. W.l.o.g, let (z, z′) be the arc added into T ′

f . We
then remove the outgoing arc (z, x) of T ′

f from T ′
f and add it

into T ′
j . We also add (z′, z) into T ′

j .
If h ≤ �k

2 � we cannot add both arcs (z, z′) and (z′, z) into
T ′

j and T ′
h as these arborscenses should not share an edge.

Similarly to the case before we can choose some f > �k
2 �

and add arc (z, z′) to T ′
f . Now we can move arc (z, x) to T ′

j

from T ′
f . Then also add arc (z′, z) into T ′

j . Lastly, we add arc
(z, z′) to T ′

h.
We showed that after applying operations i–iv it is possible

to reconstruct arborescenses with desired properties. Therefore
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after applying all operations we will construct arborescenses
for given graph G. �
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