
What you need to know about
(Smart) Network Interface Cards

Georgios P. Katsikas1[0000−0002−3890−6583], Tom Barbette1[0000−0003−1269−2190],
Marco Chiesa1[0000−0002−9675−9729], Dejan Kostić1[0000−0002−1256−1070], and

Gerald Q. Maguire Jr.1[0000−0002−6066−746X]

KTH Royal Institute of Technology, Sweden
{katsikas,barbette,mchiesa,dmk,maguire}@kth.se

Abstract. Network interface cards (NICs) are fundamental components
of modern high-speed networked systems, supporting multi-100 Gbps
speeds and increasing programmability. Offloading computation from a
server’s CPU to a NIC frees a substantial amount of the server’s CPU re-
sources, making NICs key to offer competitive cloud services. Therefore,
understanding the performance benefits and limitations of offloading a
networking application to a NIC is of paramount importance.
In this paper, we measure the performance of four different NICs from
one of the largest NIC vendors worldwide, supporting 100 Gbps and
200 Gbps. We show that while today’s NICs can easily support multi-
hundred-gigabit throughputs, performing frequent update operations of
a NIC’s packet classifier — as network address translators (NATs) and
load balancers would do for each incoming connection — results in a
dramatic throughput reduction of up to 70 Gbps or complete denial of
service. Our conclusion is that all tested NICs cannot support high-speed
networking applications that require keeping track of a large number of
frequently arriving incoming connections. Furthermore, we show a vari-
ety of counter-intuitive performance artefacts including the performance
impact of using multiple tables to classify flows of packets.

Keywords: Network interface cards · hardware classifier · offloading ·
rule operations · performance · benchmarking · 100 GbE.

1 Introduction

With the dramatic growth of Network Interface Card (NIC) speeds, optimiz-
ing I/O operations is essential for supporting modern-day applications. As ev-
idenced by recent work, handling 40 Gbps of Transmission Control Protocol
(TCP) traffic requires roughly 20%-60% of the CPU resources on a general-
purpose server [10,31,48]. These communication overheads consume CPU cycles
that could otherwise be used to run customers’ applications, ultimately resulting
in expensive deployments for network operators.

The final authenticated version is available online at https://doi.org/10.1007/978-
3-030-72582-2 19

Offloading network operations to NICs is a pragmatic way to partially re-
lieve CPUs from the burden of managing (some of the) network-related state.
Examples of such offloading are TCP optimizations, such as Large Receive
Offload (LRO) and TCP Segmentation Offload (TSO) [1]. Increasingly, NICs
are equipped with built-in Field-Programmable Gate Arrays (FPGAs) or net-
work processor cores that can be used to offload computation from a host’s
CPU directly into the NICs. Such NICs are referred to as SmartNICs. Sev-
eral preliminary investigations of SmartNIC technologies have demonstrated po-
tential benefits for offloading networking stacks [2,10,30,31,32], network func-
tions [3,18,25,43,4], key-value stores[7,26,28], packet schedulers [44], neural net-
works [42], and beyond [21,38]. Despite the increasing relevance of (smart) NICs
in today’s systems, very few studies have focused on dissecting the performance
of SmartNICs, comparing them with their predecessors, and providing guidelines
for deploying NIC-offloaded applications, with a focus on packet classification.

Our goal. In this work, we study the performance of (smart) NICs for widely
deployed packet classification operations. A key challenge of packet classification
is the ability of the classifier to both quickly (i) match incoming packets to their
packet processing actions and (ii) adapt the state of the packet classifier, e.g., by
inserting new rules or updating existing ones. For example, consider a cloud load
balancer (LB) that keeps track of the mapping between incoming connections
and the back-end servers handling these connections. The LB may utilize a NIC’s
packet classifier to map TCP/IP 5-tuples of incoming connection identifiers to
their corresponding servers. As a single cluster in a large-scale datacenter may
receive over 10 million new connections per second [29], it is critical to support
fast updates for packet classifiers, thus achieving high throughput and low pre-
dictable latency. Our study of packet classifiers reveals unexpected performance
bottlenecks in today’s (smart) NICs and provides guidelines for researchers and
practitioners, who wish to offload dynamic packet classifiers to (smart) NICs.

Findings. We analyzed the performance of four different NICs with speeds in
the 100 Gbps to 200 Gbps range. Our key findings are summarized in Table 1.
In short, we show that the forwarding throughput of the tested NICs sharply
degrades when i) the forwarding plane is updated and ii) packets match multiple
forwarding tables in the NIC. Moreover, we devise an efficient in-memory update
mechanism that mitigates the impact of updating the rules on the forwarding
throughput. The code to reproduce the experiments of this paper is publicly
available along with supplementary graphs showing the experimental evaluation
of all four NICs under test [17].

Paper outline. This paper is organized as follows: §2 outlines the experimen-
tal methodology used in this work; §3 provides useful performance insights into
modern NICs; §4 discusses related efforts in the area of programmable network-
ing hardware beyond the work mentioned inline throughout the paper. Finally,
§5 concludes this paper.

Table 1: Main findings of this paper.
Finding Implication

There are parts of the NIC table
hierarchy that do not yield the expected
forwarding performance (§3.1).

Throughput degradation from 100 Gbps
to 20 Mbps and multi-fold latency
increase (Fig. 2a and Fig. 2c).

Uniformly spreading rules across a chain
of NIC tables incurs performance penalty
(§3.1).

Throughput degradation from 100 Gbps
to 13 Gbps and 10x higher latency when
using 16 tables (Fig. 2b and Fig. 2d).

A batch update of the NIC classifier,
while processing traffic, makes the NIC
temporarily unavailable (§3.1).

100% packet loss for up to several
seconds with an increasing number of
installed rules (Fig. 3).

Frequent updates of the NIC classifier,
while processing traffic, causes substantial
performance degradation (§3.1).

Throughput degradation from 100 Gbps
to 30 Gbps and ∼2x higher latency
(Fig. 4).

Updating the NIC classifier from a
separate core does not degrade the NIC
performance (§3).

No performance impact when processing
traffic on core 0 and updating rules from
core 1 (Fig. 3 and Fig. 4).

The Internet protocol selection (i.e., IPv4
vs. IPv6) affects the NIC rule installation
rate (§3.2.1).

IPv6 rule insertion rate is either 5-181x
faster or 12% slower than the respective
IPv4 rate, depending on the part of the
NIC table hierarchy applied (Fig. 5a-5b).

The network slicing protocol selection
affects the NIC rule installation rate
(§3.2.1).

Installing VLAN-based rules is up to
50% faster than installing tunnel-based
rules (Fig. 5c).

NIC rule update operations are
non-atomic and rely on sequential
addition and deletion (§3.2.2).

Too slow for applications that require
heavy updates. Our dedicated update
API performs up to 80% faster (Fig. 6).

2 Measurement Methodology

This section outlines the testbed used to conduct the experiments as well as our
methodology to extract results.

2.1 Experimental Setup

Testbed. All of the experiments described in this paper used the testbed shown
in Fig. 1. Two back-to-back interconnected servers, each with a dual-socket 16-
core IntelrXeonr Gold 6134 (SkyLake) CPU clocked at 3.2 GHz and 256 GiB
of DDR4 Random Access Memory (RAM) clocked at 2666 MHz. Each core has
2×32 KiB L1 (instruction and data caches) and a 1 MiB L2 cache, while one
25 MiB Last Level Cache (LLC) is shared among the cores in each socket. Fol-
lowing today’s best practices, hyper-threading is disabled on all servers [47] and
the Operating System (OS) is the Ubuntu 18.04.5 distribution with Linux kernel
v4.15. One server acts as a traffic generator and receiver while the other server
is the Device Under Test (DUT).

Tested NICs. We focus our study on one of the most widespread NICs available
in Commercial off-the-shelf (COTS) hardware to date, as shown in Table 2. Such

NICs, manufactured by NVIDIA Mellanox, operate at 100 Gbps link speeds (or
beyond), while providing advanced processing capabilities. We also considered
existing Intel NICs, such as the 10 GbE 82599 [12] and the 40 GbE XL710 [13],
however these NICs operate at much lower link speeds and are limited to 8 K
flow rules. The upcoming 100 GbE Intel E810 series network adapter [14] provides
16 K (masked) filters based on ternary content addressable memory (TCAM),
which is still far from the range of several millions of flow rules tested with
the NVIDIA Mellanox NICs. Moreover, the hardware limits of the Intel NICs
are known, as Intel published relevant hardware datasheets [12,13,14]. NVIDIA
Mellanox has not disclosed such information; thus our study sheds some light
on unknown aspects of these popular NICs, while helping to understand how
performance has evolved across the same family of NICs.

Table 2: The characteristics of the NICs used for the experiments in this paper.

Vendor Model
Speed
(Gbps)

of
Ports

Firmware
Version

Driver
Name Version

NVIDIA
Mellanox

ConnectX-4 [35]
100

2

12.28.2006

mlx5 core 5.2-1.0.4
ConnectX-5 [36] 16.29.1016
BlueField [34] 18.29.1016

ConnectX-6 [37] 200 20.29.1016

All NICs except for the NVIDIA Mellanox ConnectX-6 use a PCIe 3.0 x16 bus
to connect with a server’s CPU. The ConnectX-6 adapter uses two PCIe 3.0 x16
slots. The BlueField NIC is a SmartNIC based on the ConnectX-5 adapter, also
equipped with a 16-core ARM processor for additional in-NIC traffic process-
ing. We briefly describe the general architecture and differences of the NVIDIA
Mellanox NICs. All NICs have a first table, called Table 0 or “root” table with
space for 65 536 rule entries. All the NICs, except for the ConnectX-4, provide an
additional sequence of high-performance exact-match tables (supporting a per-
table mask) that can be used to massively offload packet classification from the
CPUs to the NIC. Note that these NICs do not support Longest Prefix Match
(LPM); instead the user should implement LPM with a combination of multiple
tables with different masks. The capacity of these tables is only bounded by the
host’s available memory, thus they can accommodate a much larger number of
rules, given the ample amount of RAM in modern servers. We refer to the first
of those extra tables as Table 1 and note that any subsequent table (i.e., Table
2,3, etc.) appears to have similar properties with Table 1.

Measurement Server

Physical link

Traffic Generator

Traffic Receiver

Device Under Test

Forwarding NF
Core 0

Trace
Generator

Analysis

Rule Generator
Core 0/1

Core 1

Core 0

Fig. 1: Testbed setup and measurement methodology.

Traffic characteristics. A multi-core traffic generator and receiver, based
on the Data Plane Development Kit (DPDK) v20.11 [46], is deployed on the
measurement server as shown in Fig. 1. Four cores are allocated to the traffic
generator, which inject a trace of 10K UDP flows at 100 Gbps. Each flow consists
of MTU-sized (i.e., 1500-bytes) packets. This traffic first traverses the DUT and,
if not dropped, then returns to the measurement server, this time reaching four
different cores on the same CPU socket of the traffic generator.

Note that the measurement server injects traffic towards the DUT using the
same 100 GbE ConnectX-5 NIC for all the experiments. This ensures that only
the DUT’s NIC hardware may vary across all of the experiments , thus potential
differences among the experimental results solely depend on the performance of
the underlying NIC in the DUT.

Measurements. Each experiment is executed 5 times; the collected measure-
ments are plotted using either errorbars or boxplots, which visualize the 1st,
25th, 50th (i.e., median), 75th, and 99th values obtained across these 5 itera-
tions, unless stated otherwise. The traffic receiver of the measurement server
reports measurements related to end-to-end throughput, latency variance per-
centiles, per-queue packet & byte counters both at the measurement server and
the DUT, packet loss, and the duration of each experiment. When reporting la-
tency, we repeated experiments at 5Mpps (∼60 Gbps), avoiding link speed to be
a bottleneck on both the DUT and the traffic generator, thus ensuring latency
changes are due to the NIC and not packets buffering in queues.

3 Analysis of Flow Tables

This section benchmarks the selected NICs focusing on three different aspects
related to packet classifiers.

First, we quantify the performance impact of the NICs’ hardware classi-
fiers with (i) an increasing number of rules, (ii) an increasing number of tables
hosting these rules, and (iii) increasingly larger or more frequent updates being
installed by the control plane(see §3.1). Second, we analyse the performance of
flow rule insertion/deletion operations in terms of latency for rule insertions and
throughput (see §3.2.1). Finally, after discovering flow rule modifications are not
supported by these NICs, we evaluate a different strategy to realize fast and
atomic rule updates in the packet classifier of the analyzed NICs (see §3.2.2).

3.1 Hardware Classification Performance

Overview. In this section we measure packet classification performance of
modern NICs under a variety of conditions. First, we show that the first table
of these NICs drops almost all traffic when memory utilization exceeds ∼85%.
We also show that the packet processing latency of the analyzed NICs exhibits
a long tail in this situation (up to 120 ms). Moreover, spreading an increasing
number of rules across four or more tables in these NICs results in substantial

throughput degradation (23-88% when using 4-16 tables). Finally, we show that
runtime modifications to the packet classifier’s rules have a detrimental effect on
the NIC’s throughput: we observe a reduction of 70 Gbps of throughput (out of
100 Gbps).

Scenario. In the following experiments the DUT runs a single-core forwarding
Network Function (NF) using the testbed described in §2.1. The NIC of the DUT
dispatches input frames to this NF according to the flow rules installed in the
NIC. These rules are stored either in the default “root” flow table of the NIC
(i.e., Table 0) or in non-root tables (i.e., Tables 1-16). We differentiate between
these two table categories as NVIDIA Mellanox explicitly mentions that Table 0
has a limited number of supported flow entries (i.e., 216 rules) and the latter
support a faster API based on shared memory between the NIC and the driver
running in userlevel. We only show results for the ConnectX-5 NIC as we observe
qualitatively similar trends for all the other NICs.

The rest of this section provides experimental evidence to address the follow-
ing questions:

Q1 Does the number of rules and/or tables affect the performance

of the NIC?
Figure 2 shows the performance of the packet classifier with an increasing number
of rules (x-axis) for all types of tables of the NVIDIA Mellanox ConnectX-5 NIC.
We denote by Table 1-X the case where we uniformly install forwarding rules
on the first X non-root tables, i.e., Table 1, . . . , Table X. The rules installed in
the NIC are simple exact matches and the generated traffic matches exactly one

0.4
0.8

1 16k 32k
of rules in Table 0 of a 100 GbE Mellanox ConnectX-5 NIC

56k 57k 58k 59k 60k 61k 62k 63k 64k 65k 66k

1

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

>100x

~35x

Input Load
Table 0

(a) Throughput (Table 0).

0.4
0.8

0 10k 20k 30k 40k 50k 60k 70k 80k 90k100k
of rules across Tables 1-16 of a 100 GbE Mellanox ConnectX-5 NIC

1M 2M 3M 4M

1

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

 Input Load
 Table 1
 Tables 1-2

 Tables 1-4
 Tables 1-8
 Tables 1-16

>7.5x

(b) Throughput (Tables 1 to 16).

0

20μs
50μs

200μs
500μs

1ms

4ms
10ms

30ms
70ms

150ms
300ms

1 16k 32k

L
a
te

n
c
y

of NIC rules in Table 0 of a 100 GbE Mellanox ConnectX-5 NIC
56k 57k 58k 59k 60k 61k 62k 63k 64k 65k 66k

~50x

~40x

Table 0

(c) Latency (Table-0).

0

20μs
50μs

200μs
500μs

1ms

4ms
10ms

30ms
70ms

150ms
300ms

0 10k 20k 30k 40k 50k 60k 70k 80k 90k100k

L
a
te

n
c
y

of NIC rules in Table 1 of a 100 GbE Mellanox ConnectX-5 NIC
1M 2M 3M 4M

~10x

 Table 1
 Tables 1-16

(d) Latency (Tables 1 to 16).

Fig. 2: Throughput and latency (on a logarithmic scale) of a hardware-based
100 GbE NVIDIA Mellanox ConnectX-5 NIC classifier with different number of
pre-installed rules across Table 0 (left) and Tables 1-16 (right).

default rule installed in the NIC. We generate 8Mpps of 1.5KB packets towards
the DUT, equivalent to 100 Gbps. Fig. 2a and 2c show that the performance (i.e.,
throughput and packet processing latency) for Table 0 decreases dramatically
as soon as the occupancy of the table goes above 85%, hence the last 15%
of memory is in practice unusable. Specifically, the throughput decreases from
100 Gbps down to 20 Mbps, while the latency increases by several orders of
magnitude, from tens of µs to more than a hundred of ms. We observe a similar
decrease in throughput for small packets (i.e., 64B), even when the input load
is 3.5 Gbps, which is 30x lower than the maximum attainable throughput of the
NIC under test. This confirms that the performance degradation issue is not a
result of excessive input load, but rather a design artifact of the root table.

Figures 2b and 2d show that non-root tables (i.e., Tables 1-16) are much
faster than the root table. Specifically, using a non-root table the NIC achieves
line-rate throughput and low predictable latency even with 2M entries in Table 1.
However, spreading rules across an increasing number of non-root tables results
in substantial performance degradation. As shown in Fig. 2b, for most of the
tested ruleset sizes, the NIC cannot achieve more than 20 Gbps throughput when
using 16 tables, while the respective latency to access these tables exhibits a ten-
fold increase compared to the single-table case, as shown in Fig. 2d.

Q2 Do updates to the classifier affect the performance of the NIC?

The objective of this experiment is to understand how runtime modifications of
the packet classifier’s ruleset impact the throughput of the forwarded traffic. We
envision two types of experiments motivated by two different use cases. In the
first experiment, we generate a single batch of rule insertions to be installed into
the NIC. This is reminiscent of scenarios in which a network suddenly reacts to a
failure event that triggers many rule updates. For instance, Internet link failures
may generate a burst of BGP updates for possibly 10s of 100s of thousands of IP
prefixes received from a neighboring network [11]. In the second experiment, we
generate periodic rule insertions in the packet classifier at a given frequency. This
setting is reminiscent of cloud datacenter Layer 4 load balancers (LBs), where
LBs insert a new rule into a packet classifier each time a new connection arrives.
We note that, based on realistic connection size distributions taken from cloud
datacenter workloads, the number of new rules to be installed ranges between
4K per second for “Hadoop’ workloads to 36K and 338K per second for “cache
follower” and “web server” workloads, respectively [41]. In both experiments, we
generate a workload with packet sizes of 1.5 KB. To avoid external bias from the
system’s CPU, we measure two different cases for each experiment: In the first
case (labeled as “Same Core” below), we use the same CPU core that performs
traffic forwarding to install the rules in the NIC. In the second case (labeled
as “Distinct Cores” below), we use one CPU core for traffic forwarding and
another CPU core for rule installation. All the traffic matches a single rule in
the classifier. As in the previous experiment, we obtain similar qualitative results
for all the NICs and only show the NVIDIA ConnectX-5 ones.

Batch-based updates have detrimental effects on performance. Figure 3
shows the packet processing throughput (y-axis) achieved by the NIC’s packet
classifier over time (x-axis) for Tables 0 and 1, while the NIC simultaneously
(i) receives a workload of 100 Gbps of 1500 B packets and (ii) inserts a number
of new rules (see the legends) ranging between 1 and 100 K.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Time (seconds)

Table 0-Same Core- 1 Rule
Table 0-Same Core- 1k Rules
Table 0-Same Core- 10k Rules
Table 0-Same Core-100k Rules

(a) Same Core (Table 0).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Time (seconds)

Table 1-Same Core- 1 Rule
Table 1-Same Core- 1k Rules
Table 1-Same Core- 10k Rules
Table 1-Same Core-100k Rules

(b) Same Core (Table 1).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Time (seconds)

Table 0-Distinct Cores- 1 Rule
Table 0-Distinct Cores- 1k Rules
Table 0-Distinct Cores- 10k Rules
Table 0-Distinct Cores-100k Rules

(c) Distinct Cores (Table 0).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Time (seconds)

Table 1-Distinct Cores- 1 Rule
Table 1-Distinct Cores- 1k Rules
Table 1-Distinct Cores- 10k Rules
Table 1-Distinct Cores-100k Rules

(d) Distinct Cores (Table 1).

Fig. 3: Impact of batch-based updates on the performance of a 100 GbE NVIDIA
Mellanox ConnectX-5 NIC classifier.

As shown in Fig. 3a even with a batch of 1K rules (see the green circles), the
NIC fails to process any traffic for about 300 ms. For a 100 Gbps link with MTU-
sized frames, this translates to a packet loss of around 2.5 M frames, while more
than 40 M frames could have been lost from a 100 Gbps link with 64 B frames.
Increasing the rules’ batch size to 10K results in a longer failure of around 2 s
(see the red squares), while in the case of 100K rules (blue triangles) the NIC
does not recover even after 6 s. The down-time of Table 1 is 500 ms, but the
problem manifests itself only in the case of 100 K rules as shown in Fig. 3b.
On the other hand, installing the batch updates from a dedicated core does not
affect the forwarding performance of the NF as shown in Fig. 3c and 3d.

We believe that these results have far-reaching implications on both (i) the
security of the network functions, as batch-based updates could become a vec-
tor of denial-of-service attacks and (ii) the design of highly-reactive network
controllers, e.g., to enable large data-plane updates for fast failover recovery [6].

Rate-based updates reduce NIC forwarding capacities. Installing peri-
odic batches of rules from the same core is a typical operation of NATs and Layer
4 load balancers, which need to reactively install rules matching new incoming

connections. Installing rules from a different core allows us to dissect just the
performance degradation due to interference in the NIC data-plane.

Fig. 4a and 4b show the throughput of the forwarding NF when we simulta-
neously insert rules into the NIC classifier at a specific rate. The insertion rate
ranges between 1 K to 10 K rules per second for Table 0 and 10 K to 500 K rules
per second for Table 1. The inserted rules are not generated in response to a

0

10

20

30

40

50

60

70

80

90

100

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

~3x

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

of rules/sec inserted in Table 0 of a 100 GbE Mellanox ConnectX-5 NIC

Input Load
Same Core

Distinct Cores

(a) Throughput (Table 0).

0

10

20

30

40

50

60

70

80

90

100

0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

of rules/sec inserted in Table 1 of a 100 GbE Mellanox ConnectX-5 NIC

Input Load
Same Core

Distinct Cores

200k 300k 400k 500k

>3x

(b) Throughput (Table 1).

25

50

75

100

125

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

>2x

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

μ
s
)

of rules/sec inserted in Table 0 of a 100 GbE Mellanox ConnectX-5 NIC

Same Core
Distinct Cores

(c) Average Latency (Table 0).

25

50

75

100

125

0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

μ
s
)

of rules/sec inserted in Table 1 of a 100 GbE Mellanox ConnectX-5 NIC

Same Core
Distinct Cores

200k 300k 400k 500k

82%

(d) Average Latency (Table 1).

Fig. 4: Impact of rate-based updates on the performance of a 100 GbE NVIDIA
Mellanox ConnectX-5 NIC classifier.

new incoming connection but pre-computed and inserted regardless of when new
connections arrive. The results show that when inserting rules from a different
core, the throughput and average latencies (see also Fig. 4c and 4d) are mostly
unaffected by the parallel insertion. However, when the insertions are generated
from the same core running the forwarding NF, we observe a significant perfor-
mance drop. Specifically, Fig. 4a and 4b show that the throughput decreases by
roughly 70 Gbps for 10K and 500K rule insertions per second in Table 0 and
Table 1, respectively. As shown in Fig. 4c and 4d, the respective latency increase
is up to more than 2x for Table 0 and 82% for Table 1. This result demonstrates
that the bottleneck of the update operation is the standard API provided by
the NIC vendor for updating the forwarding table (which requires long time and
interrupts the normal forwarding for prolonged period of times).

We note that installing rules from a different core is not a panacea. One would
need expensive inter-core communication to install a rule as well as reserve extra
CPU resources to handle the rule installation. For instance, to install i.e., 500K
rules consumes 100% of a CPU core for several hundreds of milliseconds.

Summary. Our results show that it is possible to introduce a denial of service
attack to the packet classifier of the NICs under test or dramatically reduce its
throughput by up to 70 Gbps, by updating the classifier’s rules using the same
CPU core that performs traffic processing. This technique is commonly used by
sharded high-speed data planes [4], as it would be the case for per-connection
NFs. We note that realistic datacenter workloads generate new connections in
the range of 4K-400K new connections per second. Our results indicate that one
would not gain any benefit from offloading applications, such as cloud NATs and
load balancers, with highly dynamic tables, to the analyzed NICs. Moreover, all
NICs under test achieve similar performance across all the experiments in this
section; with the only difference being the NVIDIA ConnectX-6 NIC, which
exhibits slightly lower throughput degradation than the rest of the NICs in the
experiment shown in Fig. 2a and 2b [17].

In the next subsection, we investigate how rule modifications are performed
and explore performance limitations of these rule modifications. In response
to this, we provide alternative workarounds that mitigate some of the issues
described in this section.

3.2 Rule Operations Analysis

We now focus solely on the performance of rule update operations (i.e., inser-
tions, deletions, and modifications’ completion times). Clearly, the shorter the
update completion time, the lower the performance disruption on the forwarded
traffic. Our analysis reveals three main findings. First, while modern NICs handle
almost 500K insertions per second, there is a significant and sometimes counter-
intuitive performance difference depending on the type and number of fields that
are matched by the packet classifier, as well as the type and number of actions
that are applied by a rule. Surprisingly, installing rules matching IPv4 in Table 0
is a much slower process than installing IPv6 rules. Our second finding is that
the cost of installing VLAN-based rules for network slicing is substantially lower
than the respective cost of installing GRE/VXLAN/GENEVE-based rules. Our
third and final finding relates to the fact that rule modification operations are
not atomically supported by the analyzed NICs: one has to delete the old rule
and insert a new one. Our analysis shows that rule modification time can be
decreased by 80% compared to the insertion/deletion operations supported by
the standard API of the vendors, by directly modifying the content of the exact
match tables in the NIC memory.

3.2.1 Insertion/deletion of rules We now compute the rule insertion rate
supported by an NVIDIA Mellanox ConnectX-5 NIC in Tables 0 and 1. We use
a single CPU core to insert a number of rules in the range between 1 and 65536
and measure the time that it takes to insert them. From this value, we compute
the rule insertion rate.

Figure 5a shows that the rules insertion rate for Table 0 for five types of
rules matching different combinations of fields, such as Ethernet, IPv4, IPv6,

50
100
150
200
250
300
350
400
450
500
550

1 16k 32k

N
IC

 r
u

le
 i

n
s

e
rt

io
n

 r
a

te
 (

k
ru

le
s

/s
e

c
)

of NIC rules in Table 0 of a 100 GbE Mellanox ConnectX-5 NIC
56k 57k 58k 59k 60k 61k 62k 63k 64k 65k 66k

~5x ~181x

Match=ETH
Match=ETH/IPv6
Match=ETH/IPv6/TCP
Match=ETH/IPv4
Match=ETH/IPv4/TCP

(a) Rule insertion rate (Table 0) between
IPv4 and IPv6 rules.

50
100
150
200
250
300
350
400
450
500
550

1 16k 32k

N
IC

 r
u

le
 i

n
s

e
rt

io
n

 r
a

te
 (

k
ru

le
s

/s
e

c
)

of NIC rules in Table 1 of a 100 GbE Mellanox ConnectX-5 NIC
56k 57k 58k 59k 60k 61k 62k 63k 64k 65k 66k

~12%

Match=ETH
Match=ETH/IPv4
Match=ETH/IPv4/TCP
Match=ETH/IPv6
Match=ETH/IPv6/TCP

(b) Rule insertion rate (Table 1) between
IPv4 and IPv6 rules.

50
100
150
200
250
300
350
400
450
500
550

1 16k 32k

N
IC

 r
u

le
 i

n
s

e
rt

io
n

 r
a

te
 (

k
ru

le
s

/s
e

c
)

of NIC rules in Table 1 of a 100 GbE Mellanox ConnectX-5 NIC
56k 57k 58k 59k 60k 61k 62k 63k 64k 65k 66k

47%

50%

Match=ETH
Match=ETH/VLAN/IPv4/TCP
Match=ETH/VLAN/IPv6/TCP
Match=ETH/IPv4/TCP (GRE)
Match=ETH/IPv4/UDP (VXLAN)
Match=ETH/IPv4/UDP (GENEVE)

(c) Rule insertion rate (Table 1) for
various slicing protocols.

50
100
150
200
250
300
350
400
450
500
550

1 16k 32k

N
IC

 r
u

le
 i

n
s

e
rt

io
n

 r
a

te
 (

k
ru

le
s

/s
e

c
)

of NIC rules in Table 1 of a 100 GbE Mellanox ConnectX-5 NIC
56k 57k 58k 59k 60k 61k 62k 63k 64k 65k 66k

32%

Matches=1 - Actions=1
Matches=1 - Actions=2
Matches=1 - Actions=3
Matches=1 - Actions=4

(d) Rule insertion rate (Table 1) with
increasing number of actions.

Fig. 5: Rule insertion performance (in kRules/sec) of a hardware-based 100 GbE
NVIDIA Mellanox ConnectX-5 NIC classifier with various rule sets in [1, 65536]
stored in two different tables.

and TCP. A single action is applied to a packet matching any of these rules.
Surprisingly, our measurements show a striking difference between IPv4 and
IPv6. Specifically, inserting rules matching IPv4 results in a sharp slow-down in
the insertion rate compared to IPv6 rules, which is already 5x slower with just
16K entries. We profiled both operations to unveil the reasons of this perfor-
mance diversity and found that IPv4 rules are directly installed by the kernel
in hardware, using the firmware API, while the IPv6 rules are managed by the
userlevel DPDK driver similarly to the rules of non-root tables. On the con-
trary, Fig. 5b shows the same experiment for Table 1. We note that in this case
matching on IPv4 results in a 12% higher insertion rate compared to IPv6, the
opposite of what we observed for Table 0. This is because Table 1 is managed in
software, thus both IPv4 and IPv6 are managed by the respective DPDK driver.

We then investigate how different extensively adopted network slicing proto-
cols affect the insertion rate into the NIC’s most performant Table 1. We consider
VLAN, GRE, VXLAN, and GENEVE virtualization headers, which are widely
used in datacenter and wide-area network deployments. Figure 5c shows that
rules matching VLAN tags can be installed up to 50% more rapidly than those
relying on the other virtualization schemes.

We now verify whether the extent to which the actions associated to the rules
impact the rules’ insertion rate. Figure 5d shows that increasing the number of
actions performed on a packet may result in 32% slower insertion rate. We believe
these results are inline with the natural intuition of slower insertions for more
complex actions.

We finally repeat all the previous experiments but in this case we remove
entries from the NIC’s packet classifier. To our biggest surprise, when we add a
TCP match on a set of rules in Table 0, the deletion becomes faster than without
having the TCP header. This counter-intuitive result demonstrates once more
that any deployment on Table 0 should be accompanied by a comprehensive
testing of the classifier’s structure to avoid unexpected performance slowdown.

3.2.2 Modification of rules We now investigate the problem of updating a
set of rules on the analyzed NICs. We first observe that none of the evaluated
NICs support direct flow modifications through their APIs. One has to first
delete and then insert an entry, which results in two major issues: (i) there are
periods when the network configuration is incorrect and (ii) as observed in the
previous subsection, rule modifications are extremely slow for the needs of real
platforms. We therefore show how one can carefully engineer flow modifications
for simple 5-tuple matching rules to speed up rule modifications in the NIC.
We refer to our technique as enhanced in-memory update. Our technique does
not rely on the standard API provided by the NIC vendor in DPDK and the
rdma-core library to modify rules, but instead directly accesses the memory of
the exact-match stages in the pipeline and modifies them in a less disruptive
way. We defer the reader later in this section for more details on our improved
update technique.

Enhanced in-memory updates are up to 80% faster. We employed
DPDK’s flow-perf tool to measure the NICs update rate, using the standard
sequential deletion and insertion process. Then, we modified this tool to update
all installed rules by using our in-memory update. Figure 6 shows the update rate
(y-axis) in krules/sec achieved by both (i) the standard API deletion/insertion
(black squares) and (ii) our enhanced in-memory update scheme (blue stars)
with an increasing number of rules (x-axis) in the NIC classifier.

 0
 10

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
of NIC rules in Table 1 of a 100 GbE Mellanox ConnectX-5 NIC

2M 3M 4M

200

300

400

500

600

700

N
IC

 r
u

le
 u

p
d

a
te

 r
a
te

 (
k
ru

le
s
/s

e
c
)

~80%

 Update - In-memory
 Update - Delete + Insert

Fig. 6: Evaluation of the enhanced in-memory update mechanism.

We note that the standard API achieves 300K TCP/IP flow updates per
second∗ on average, possibly disrupting all the forwarded traffic as shown in
§3.1 in Q2. Our enhanced in-memory updates of the NIC classifier increases
the insertion rate for TCP/IP rules by up to 80%. We observe the CPU stalls
during the experiment, waiting for the NIC to complete memory synchronization
commands, hence reaching the limit of the NIC Direct Memory Access (DMA)
engine. We leave the problem of making the update mechanism more generic,
possibly in collaboration with NVIDIA Mellanox, as future work.

Enhanced in-memory updates explained. We now explain more in detail
how one can realize faster rule insertions/deletions/modifications on the analyzed
NICs. While NIC vendors provide their own standard API for rule modifications,
we added our own API for rule updates in DPDK and implemented support for
the API in the mlx5 driver (supporting ConnectX-4 and higher NVIDIA Mel-
lanox NICs), and the backing rdma-core library that handles messaging between
the NIC driver and the NIC itself. Instead of inserting and then removing a rule,
our new API is based on efficient in-memory updates to avoid as many memory
allocations in the driver as possible, while reusing the data-structure and only
changing the match/action field values. In the ConnectX-5 and above NICs, a
rule in a non-root table is implemented using a series of exact match hash-tables.
Each hash-table only supports a unique mask, i.e., it is left to the user to im-
plement techniques, such as tuple-space search, to implement an efficient LPM
strategy by using a series of various exact-match masked prefixes.

In the case of standard TCP 5-tuple, one needs two hash tables. The first ta-
ble matches the IP version, and the second one matches the 5-tuple itself. As far
as our reverse-engineering of this undocumented mechanism can tell, this sepa-
ration of the header fields into multiple hash-tables is dictated by the firmware,
which supports a certain set of groups of fields per hash-table. Each of these
two hash-tables work on one of those group of fields, eventually masked. Adding
more fields from the application layer, or diverse tunnel types (VXLAN, GRE,
etc.) will add more hash-tables in the chain. We note that the NIC handles hash-
table collisions using a per-bucket linked-list of colliding entries. When inserting
a new TCP/IP 5-tuple, the standard API would take an atomic reference on the
entry for the IP-version and insert an entry into the 5-tuple hash-tables, and
then remove the old rule from both hash-tables. Our update mechanism tries to
minimize the number of modifications by following the existing rule, leaving it
in the same place when the bucket does not change, not changing atomic refer-
ence (as it is the case for the IP-version hash-table), and then we either rewrite
in-place the bucket of the hash-table if the bucket index (i.e., a CRC32 hash of
the masked fields value) did not change (it is probable as all hash-tables start
with a very small size and grow as needed), or move the entry in the pointed
bucket to a new bucket if the index changes. This also avoids multiple calls to
the DMA engine to insert and remove the rule, by only selectively updating
the memory zone of the field that changed, as well as limiting the number of

∗The employed DPDK v20.11 flow API is single-threaded. Higher performance could
be achieved using multi-threaded rule insertion/deletion added in DPDK v21.02 [15].

memory accesses. As far as consistency matters, our approach tries to guarantee
atomicity of the update in the NIC. There exists a small amount of time during
which, when the bucket entry is moved, the old and the new entries co-exist
before the old entry is marked as invalid. We believe this co-existence does not
open a security vulnerability since both entries are valid. Operators should fall
back to the standard API if this is a concern.

For now, we only support updates on match operations’ values; to implement
action operations’ value updates, such as redirecting packets to a different queue,
would be fairly similar. This is particularly suitable for connection tracking, such
as NAT and load balancers. Updating the masks of a rule is another complex
operation that we currently do not support. This is challenging because different
hash-tables implement different masked elements, possibly defeating the benefits
of re-using some pre-installed elements.

4 Related Work

Measuring the performance of emerging network technologies has brought enor-
mous benefits in our understanding of where the critical bottlenecks reside in
today’s deployed network systems. Neugebauer et al [33] have investigated the
performance of the PCIe device interconnecting modern NICs to the CPUs and
memories showing surprisingly low performance with small packets. Farshin et
al. (i) quantified the impact of direct cache access in Intel processors [9] and
(ii) proposed software stack optimizations to achieve per-core hundred-gigabit
networking [8]. Kuzniar et al [23,24] have unveiled a variety of issues with the
initial OpenFlow-based switches, such as the lack of consistency during updates.
In contrast, we focus on NIC performance. Liu et al. [28] analyzed the memory
characteristics, number of cores required to forward a certain amount of traffic,
and Remote Direct Memory Access (RDMA) capabilities of five different Smart-
NICs. In our work, we focus on the packet classifier component of a NIC and the
impact of memory occupancy and runtime modifications on its performance.

A variety of efforts have been devoted to the orthogonal problem of scheduling
updates in a network [16,19,20,22,27,40,39] or designing faster data structures
at the data-plane level that are amenable to quick modifications [5,6,45].

5 Conclusions

Motivated by the ever-growing increase of networking speeds and offloading
trends, this paper investigates the performance bottlenecks of today’s NIC packet
classifiers. We focused on several evolving models of one of the largest NIC ven-
dors worldwide, showing a variety of critical performance limitations depending
of the memory occupancy, the pipeline length, runtime rule modifications, and
rule modification speed. We explored the idea of performing gradual updates di-
rectly in the NIC, improving the unveiled bottlenecks as well as many obstacles
towards building a more efficient and generic API.

6 Acknowledgments

We would like to thank our shepherd Dr. Diego Perino and the anonymous
reviewers for their insightful comments on this paper. This work has received
funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 770889).
This work was also funded by the Swedish Foundation for Strategic Research
(SSF) and KTH Digital Futures.

References

1. Antichi, G., Callegari, C., Giordano, S.: Implementation of TCP large receive
offload on open hardware platform. In: Proceedings of the 2013 ACM Work-
shop on High Performance and Programmable Networking. pp. 15–22 (2013).
https://doi.org/10.1145/2465839.2465842

2. Arashloo, M.T., Lavrov, A., Ghobadi, M., Rexford, J., Walker, D., Wentzlaff,
D.: Enabling Programmable Transport Protocols in High-Speed NICs. In: 17th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
20). pp. 93–109. USENIX Association, Santa Clara, CA (Feb 2020), https://www.
usenix.org/conference/nsdi20/presentation/arashloo

3. Ballani, H., Costa, P., Gkantsidis, C., Grosvenor, M.P., Karagiannis, T., Koromi-
las, L., O’Shea, G.: Enabling End-Host Network Functions. In: Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communication. p.
493–507. SIGCOMM ’15, Association for Computing Machinery, New York, NY,
USA (2015). https://doi.org/10.1145/2785956.2787493

4. Barbette, T., Katsikas, G.P., Maguire, Jr., G.Q., Kostić, D.: RSS++: load
and state-aware receive side scaling. In: Proceedings of the 15th Inter-
national Conference on Emerging Networking Experiments And Technolo-
gies. pp. 318–333. CoNEXT ’19, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3359989.3365412

5. Bonaventure, O., Filsfils, C., Francois, P.: Achieving sub-50 milliseconds recovery
upon bgp peering link failures. IEEE/ACM Trans. Netw. 15(5), 1123–1135 (Oct
2007). https://doi.org/10.1109/TNET.2007.906045

6. Chiesa, M., Sedar, R., Antichi, G., Borokhovich, M., Kamisiński, A., Nikolaidis,
G., Schmid, S.: PURR: A Primitive for Reconfigurable Fast Reroute: Hope for
the Best and Program for the Worst. In: Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies. p. 1–14.
CoNEXT ’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3359989.3365410

7. Eran, H., Zeno, L., Tork, M., Malka, G., Silberstein, M.: NICA: An Infrastruc-
ture for Inline Acceleration of Network Applications. In: Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Conference. p. 345–361. USENIX
ATC ’19, USENIX Association, USA (2019), https://www.usenix.org/system/
files/atc19-eran.pdf

8. Farshin, A., Barbette, T., Roozbeh, A., Maguire Jr., G.Q., Kostić, D.: Packet-
Mill: Toward per-core 100-Gbps Networking. In: Proceedings of the Twenty-Sixth
International Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS ’21, Association for Computing Machinery, New
York, NY, USA (2021), https://doi.org/10.1145/3445814.3446724

https://doi.org/10.1145/2465839.2465842
https://www.usenix.org/conference/nsdi20/presentation/arashloo
https://www.usenix.org/conference/nsdi20/presentation/arashloo
https://doi.org/10.1145/2785956.2787493
https://doi.org/10.1145/3359989.3365412
https://doi.org/10.1109/TNET.2007.906045
https://doi.org/10.1145/3359989.3365410
https://www.usenix.org/system/files/atc19-eran.pdf
https://www.usenix.org/system/files/atc19-eran.pdf
https://doi.org/10.1145/3445814.3446724

9. Farshin, A., Roozbeh, A., Maguire Jr., G.Q., Kostić, D.: Reexamining Direct
Cache Access to Optimize I/O Intensive Applications for Multi-hundred-gigabit
Networks. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20).
pp. 673–689. USENIX Association (Jul 2020), https://www.usenix.org/conference/
atc20/presentation/farshin

10. Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha,
M., Angepat, H., Bhanu, V., Caulfield, A., Chung, E., Chandrappa, H.K., Chatur-
mohta, S., Humphrey, M., Lavier, J., Lam, N., Liu, F., Ovtcharov, K., Padhye,
J., Popuri, G., Raindel, S., Sapre, T., Shaw, M., Silva, G., Sivakumar, M., Sri-
vastava, N., Verma, A., Zuhair, Q., Bansal, D., Burger, D., Vaid, K., Maltz,
D.A., Greenberg, A.: Azure Accelerated Networking: SmartNICs in the Public
Cloud. In: 15th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 18). pp. 51–66. USENIX Association, Renton, WA (2018),
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-firestone.pdf

11. Holterbach, T., Vissicchio, S., Dainotti, A., Vanbever, L.: SWIFT: Pre-
dictive Fast Reroute. In: Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. pp. 460–473 (2017).
https://doi.org/10.1145/3098822.3098856

12. Intel: 82599 10 GbE Controller Datasheet (2016), http://www.intel.com/content/
www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.
html

13. Intel: Ethernet Converged Network Adapter XL710 10/40 GbE (2016), https:
//www.intel.com/content/dam/www/public/us/en/documents/product-briefs/
ethernet-xl710-brief.pdf

14. Intel: Ethernet Controller E810 (2021), https://www.intel.com/content/www/us/
en/design/products-and-solutions/networking-and-io/ethernet-controller-e810/
technical-library.html

15. Jaddo Wisam: app/flow-perf: add multi threaded support (Jan 2021), https://
inbox.dpdk.org/dev/20201126111543.16928-4-wisamm@nvidia.com/T/

16. Jin, X., Liu, H.H., Gandhi, R., Kandula, S., Mahajan, R., Zhang, M., Rexford, J.,
Wattenhofer, R.: Dynamic Scheduling of Network Updates. In: Proceedings of the
2014 ACM Conference on SIGCOMM. pp. 539–550. SIGCOMM ’14, ACM, New
York, NY, USA (2014). https://doi.org/10.1145/2619239.2626307

17. Katsikas, G.P., Barbette, T.: GitHub repository hosting the NIC benchmarks and
collected data, https://github.com/nic-bench

18. Katsikas, G.P., Barbette, T., Kostić, D., Steinert, R., Maguire Jr., G.Q.: Metron:
NFV Service Chains at the True Speed of the Underlying Hardware. In: 15th
USENIX Conference on Networked Systems Design and Implementation. pp. 171–
186. NSDI’18, USENIX Association, Renton, WA (2018), https://www.usenix.org/
system/files/conference/nsdi18/nsdi18-katsikas.pdf

19. Katta, N., Hira, M., Kim, C., Sivaraman, A., Rexford, J.: HULA: Scalable Load
Balancing Using Programmable Data Planes. In: Proceedings of the Symposium
on SDN Research. pp. 10:1–10:12. SOSR ’16, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2890955.2890968

20. Katta, N.P., Rexford, J., Walker, D.: Incremental Consistent Updates. In: Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software De-
fined Networking. pp. 49–54. HotSDN ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2491185.2491191

21. Kim, D., Memaripour, A., Badam, A., Zhu, Y., Liu, H.H., Padhye, J., Raindel, S.,
Swanson, S., Sekar, V., Seshan, S.: Hyperloop: group-based NIC-offloading to ac-
celerate replicated transactions in multi-tenant storage systems. In: Proceedings of

https://www.usenix.org/conference/atc20/presentation/farshin
https://www.usenix.org/conference/atc20/presentation/farshin
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-firestone.pdf
https://doi.org/10.1145/3098822.3098856
http://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-xl710-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-xl710-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-xl710-brief.pdf
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-controller-e810/technical-library.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-controller-e810/technical-library.html
https://www.intel.com/content/www/us/en/design/products-and-solutions/networking-and-io/ethernet-controller-e810/technical-library.html
https://inbox.dpdk.org/dev/20201126111543.16928-4-wisamm@nvidia.com/T/
https://inbox.dpdk.org/dev/20201126111543.16928-4-wisamm@nvidia.com/T/
https://doi.org/10.1145/2619239.2626307
https://github.com/nic-bench
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1145/2491185.2491191

the 2018 Conference of the ACM Special Interest Group on Data Communication.
pp. 297–312 (2018). https://doi.org/10.1145/3230543.3230572

22. Kuźniar, M., Pereš́ıni, P., Kostić, D.: Providing Reliable FIB Update Acknowledg-
ments in SDN. In: Proceedings of the 10th International Conference on Emerging
Networking Experiments and Technologies. pp. 415–422. CoNEXT ’14, ACM, New
York, NY, USA (2014). https://doi.org/10.1145/2674005.2675006

23. Kuźniar, M., Pereš́ıni, P., Kostić, D.: What You Need to Know About SDN Flow
Tables. In: Passive and Active Measurement (PAM). Lecture Notes in Computer
Science, vol. 8995, pp. 347–359 (2015). https://doi.org/10.1007/978-3-319-15509-
8 26

24. Kuźniar, M., Pereš́ıni, P., Kostić, D., Canini, M.: Methodology, Mea-
surement and Analysis of Flow Table Update Characteristics in Hard-
ware OpenFlow Switches. Computer Networks: The International Journal
of Computer and Telecommunications Networking, Elsevier, vol. 26 (2018).
https://doi.org/https://doi.org/10.1016/j.comnet.2018.02.014

25. Le, Y., Chang, H., Mukherjee, S., Wang, L., Akella, A., Swift, M.M., Lakshman,
T.: Uno: uniflying host and smart NIC offload for flexible packet processing. In:
Proceedings of the 2017 Symposium on Cloud Computing. pp. 506–519 (2017).
https://doi.org/10.1145/3127479.3132252

26. Li, B., Ruan, Z., Xiao, W., Lu, Y., Xiong, Y., Putnam, A., Chen, E., Zhang, L.: Kv-
direct: High-performance in-memory key-value store with programmable MIC. In:
Proceedings of the 26th Symposium on Operating Systems Principles. pp. 137–152
(2017). https://doi.org/10.1145/3132747.3132756

27. Liu, H.H., Wu, X., Zhang, M., Yuan, L., Wattenhofer, R., Maltz, D.: zUpdate:
Updating Data Center Networks with Zero Loss. In: Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM. pp. 411–422. SIGCOMM ’13, ACM,
New York, NY, USA (2013). https://doi.org/10.1145/2486001.2486005

28. Liu, M., Cui, T., Schuh, H., Krishnamurthy, A., Peter, S., Gupta, K.: Offload-
ing distributed applications onto smartNICs using iPipe. In: Proceedings of the
ACM Special Interest Group on Data Communication, pp. 318–333. Association
for Computing Machinery (2019). https://doi.org/10.1145/3341302.3342079

29. Miao, R., Zeng, H., Kim, C., Lee, J., Yu, M.: Silkroad: Making stateful layer-4 load
balancing fast and cheap using switching ASICs. In: Proceedings of the Conference
of the ACM Special Interest Group on Data Communication. pp. 15–28 (2017).
https://doi.org/10.1145/3098822.3098824

30. Mittal, R., Shpiner, A., Panda, A., Zahavi, E., Krishnamurthy, A., Ratnasamy,
S., Shenker, S.: Revisiting network support for RDMA. In: Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication. pp.
313–326 (2018). https://doi.org/10.1145/3230543.3230557

31. Moon, Y., Lee, S., Jamshed, M.A., Park, K.: AccelTCP: Accelerating Network
Applications with Stateful TCP Offloading. In: 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20). pp. 77–92. USENIX Asso-
ciation, Santa Clara, CA (Feb 2020), https://www.usenix.org/conference/nsdi20/
presentation/moon

32. Narayan, A., Cangialosi, F., Raghavan, D., Goyal, P., Narayana, S., Mittal, R.,
Alizadeh, M., Balakrishnan, H.: Restructuring endpoint congestion control. In:
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. pp. 30–43 (2018). https://doi.org/10.1145/3230543.3230553

33. Neugebauer, R., Antichi, G., Zazo, J.F., Audzevich, Y., López-Buedo, S., Moore,
A.W.: Understanding PCIe performance for end host networking. In: Proceedings

https://doi.org/10.1145/3230543.3230572
https://doi.org/10.1145/2674005.2675006
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/https://doi.org/10.1016/j.comnet.2018.02.014
https://doi.org/10.1145/3127479.3132252
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1145/2486001.2486005
https://doi.org/10.1145/3341302.3342079
https://doi.org/10.1145/3098822.3098824
https://doi.org/10.1145/3230543.3230557
https://www.usenix.org/conference/nsdi20/presentation/moon
https://www.usenix.org/conference/nsdi20/presentation/moon
https://doi.org/10.1145/3230543.3230553

of the 2018 Conference of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM 2018, Budapest, Hungary, August 20-25, 2018. pp. 327–341.
ACM (2018). https://doi.org/10.1145/3230543.3230560

34. NVIDIA Mellanox: BlueField® SmartNIC for Ethernet (2019), https://www.
mellanox.com/related-docs/prod adapter cards/PB BlueField Smart NIC.pdf

35. NVIDIA Mellanox: ConnectX®-4 EN Card 100Gb/s Ethernet Adapter
Card (2020), http://www.mellanox.com/related-docs/prod adapter cards/PB
ConnectX-4 EN Card.pdf

36. NVIDIA Mellanox: ConnectX®-5 EN Card 100Gb/s Ethernet Adapter
Card (2020), http://www.mellanox.com/related-docs/prod adapter cards/PB
ConnectX-5 EN Card.pdf

37. NVIDIA Mellanox: ConnectX®-6 EN IC 200GbE Ethernet Adapter IC (2020),
https://www.mellanox.com/related-docs/prod silicon/PB ConnectX-6 EN IC.
pdf

38. Palkar, S., Abuzaid, F., Bailis, P., Zaharia, M.: Filter before you parse: Faster
analytics on raw data with sparser. Proceedings of the VLDB Endowment 11(11),
1576–1589 (2018). https://doi.org/10.14778/3236187.3236207

39. Pereš́ıni, P., Kuźniar, M., Canini, M., Kostić, D.: ESPRES: Transparent SDN Up-
date Scheduling. In: Proceedings of the 3rd Workshop on Hot Topics in Software
Defined Networking. pp. 73–78. HotSDN ’14, ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2620728.2620747

40. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions
for Network Update. In: Proceedings of the ACM SIGCOMM 2012 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com-
munication. pp. 323–334. SIGCOMM ’12, ACM, New York, NY, USA (2012).
https://doi.org/10.1145/2342356.2342427

41. Roy, A., Zeng, H., Bagga, J., Porter, G., Snoeren, A.C.: Inside the social
network’s (datacenter) network. In: Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication. pp. 123–137 (2015).
https://doi.org/10.1145/2785956.2787472]

42. Siracusano, G., Galea, S., Sanvito, D., Malekzadeh, M., Haddadi, H., Antichi, G.,
Bifulco, R.: Running neural networks on the NIC (2020), https://arxiv.org/abs/
2009.0235

43. Spaziani Brunella, M., Belocchi, G., Bonola, M., Pontarelli, S., Siracusano, G.,
Bianchi, G., Cammarano, A., Palumbo, A., Petrucci, L., Bifulco, R.: hXDP: Effi-
cient Software Packet Processing on FPGA NICs. In: 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX Asso-
ciation, Banff, Alberta (Nov 2020), https://www.usenix.org/conference/osdi20/
presentation/brunella

44. Stephens, B., Akella, A., Swift, M.: Loom: Flexible and Efficient NIC Packet
Scheduling. In: 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19). pp. 33–46. USENIX Association, Boston, MA (Feb 2019),
https://www.usenix.org/conference/nsdi19/presentation/stephens

45. Stephens, B., Cox, A.L., Rixner, S.: Scalable Multi-Failure Fast Failover via For-
warding Table Compression. In: Proceedings of the Symposium on SDN Research,
SOSR 2016, Santa Clara, CA, USA, March 14 - 15, 2016. p. 9. ACM (2016),
https://doi.org/10.1145/2890955.2890957

46. The Linux Foundation: Data Plane Development Kit (DPDK), http://dpdk.org,
http://dpdk.org

https://doi.org/10.1145/3230543.3230560
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_EN_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_EN_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
https://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
https://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
https://doi.org/10.14778/3236187.3236207
https://doi.org/10.1145/2620728.2620747
https://doi.org/10.1145/2342356.2342427
https://doi.org/10.1145/2785956.2787472]
https://arxiv.org/abs/2009.0235
https://arxiv.org/abs/2009.0235
https://www.usenix.org/conference/osdi20/presentation/brunella
https://www.usenix.org/conference/osdi20/presentation/brunella
https://www.usenix.org/conference/nsdi19/presentation/stephens
https://doi.org/10.1145/2890955.2890957
http://dpdk.org
http://dpdk.org

47. Zhang, T., Linguaglossa, L., Gallo, M., Giaccone, P., Iannone, L., Roberts, J.: Com-
paring the performance of state-of-the-art software switches for NFV. In: Proceed-
ings of the 15th International Conference on Emerging Networking Experiments
And Technologies. pp. 68–81 (2019). https://doi.org/10.1145/3359989.3365415

48. Zhu, Y., Eran, H., Firestone, D., Guo, C., Lipshteyn, M., Liron, Y., Padhye, J.,
Raindel, S., Yahia, M.H., Zhang, M.: Congestion control for large-scale RDMA
deployments. ACM SIGCOMM Computer Communication Review 45(4), 523–536
(2015). https://doi.org/10.1145/2785956.2787484

https://doi.org/10.1145/3359989.3365415
https://doi.org/10.1145/2785956.2787484

	What you need to know about (Smart) Network Interface Cards
	Introduction
	Measurement Methodology
	Experimental Setup

	Analysis of Flow Tables
	Hardware Classification Performance
	Rule Operations Analysis
	Insertion/deletion of rules
	Modification of rules

	Related Work
	Conclusions
	Acknowledgments

