

The Role of Routing Policies in the Internet: Stability, Security, and Load-Balancing

candidate: Marco Chiesa

advisor: prof. Giuseppe Di Battista

XXVI Ciclo

agenda

- Internet routing
- three challenges
- I. stability
- II. security
- III. load-balancing
- conclusions

Internet routing

goal: provide connectivity among Internet devices

interdomain routing

- autonomous entities (Internet Service Providers, ISP)
- distributed (Border Gateway Protocol, BGP)

interdomain routing: Level 3 perspective

- autonomous entities (Internet Service Providers, ISP)
- distributed (Border Gateway Protocol, BGP)

interdomain routing: Level 3 perspective

- autonomous entities (Internet Service Providers, ISP)
- distributed (Border Gateway Protocol, BGP)

interdomain routing: Level 3 perspective

- autonomous entities (Internet Service Providers, ISP)
- distributed (Border Gateway Protocol, BGP)

interdomain routing: routing policies

- autonomous entities (Internet Service Providers, ISP)
- distributed (Border Gateway Protocol, BGP)
- economic relationships (\$\$\$)

interdomain routing: routing policies

- autonomous entities (Internet Service Providers, ISP)
- distributed (Border Gateway Protocol, BGP)
- economic relationships (\$\$\$)

intradomain routing

- <u>full</u> visibility and control

intradomain routing: routing policies

- <u>full</u> visibility and control

routing challenges (1/3)

stability: are routers guaranteed to agree on a specific routing?

routing challenges (2/3)

security: how do local (truthful/bogus) routing changes influence global routing?

routing challenges (2/3)

security: how do local (truthful/bogus) routing changes influence global routing?

routing challenges (3/3)

load-balancing: how to maximize network resources utilization?

routing challenges (3/3)

load-balancing: how to maximize network resources utilization?

contributions

arbitrary topologies + arbitrary routing policies =

computationally intractable

contributions

arbitrary topologies + arbitrary routing policies =

computationally intractable

we show how to achieve
computational tractability
by restricting
policy expressiveness or
topologies

stability: expressiveness of interdomain routing policies

goal: reach consensus on a stable routing

routing tables are computed in a distributed way:

receive route announcements from your neighbors

stability: expressiveness of interdomain routing policies

goal: reach consensus on a stable routing

routing tables are computed in a distributed way:

- receive route announcements from your neighbors
- choose your best route ← routing policies

stability: expressiveness of interdomain routing policies

goal: reach consensus on a stable routing

routing tables are computed in a distributed way:

- receive route announcements from your neighbors
- choose your best route ← routing policies
- announce it to (some of)your neighbors ← routing policies
- reiterate

stability: expressiveness of real-world interdomain routing policies

ranking:

- per-neighbor
- shortest-path

filtering:

per-neighbor

stability: motivations

- routing is prone to oscillations [Varadhan et al. 2000]
- unpredictable routes propagation [Griffin et al. 2002]

[Kushman, Kandula, Katabi "Can you hear me now?! it must be BGP", 2007]

stability: problem

can we check if, given a set of routing policies, routers are guaranteed to agree on a specific routing?

known results:

easy for policies with limited expressiveness

shortest-path Gao-Rexford } → always guaranteed to agree

stability: our contribution

[infocom 2011]

can we check if, given a set of routing policies, routers are guaranteed to agree on a specific routing?

answer: No, computationally intractable

NP-Hard to check it for arbitrary perneighbor policies

easy only for simple routing policies:

- e.g., filter "all or nothing" per-neighbor

stability: our contribution

[infocom 2011]

can we check if, given a set of routing policies, routers are guaranteed to agree on a specific routing? **No!** can we check if they agree in <*n* steps? **No!** can we check for robustness? **No!** can we check for well-known sufficient conditions? **No!**

stability: our contribution

[infocom 2011]

can we check if, given a set of routing policies, routers are guaranteed to agree on a specific routing? **No!** can we check if they agree in <*n* steps? **No!** can we check for robustness? **No!** can we check for well-known sufficient conditions? **No!**

every interesting problem is computationally hard how hard are them?

why are they so difficult?

stability: a novel mapping between routing policies and logic circuits [icnp 2013]

basic idea:

- simulate logic gates by ranking and filtering

stability: a novel mapping between routing policies and logic circuits [icnp 2013]

basic idea:

- simulate logic gates by ranking and filtering
- routing dynamics ↔ circuit logic dynamics

stability: a novel mapping between routing policies and logic circuits [icnp 2013]

basic idea:

- simulate logic gates by ranking and filtering
- routing dynamics ↔ circuit logic dynamics
- computational complexity lower bound for circuit logic problems apply to interdomain routing problems.

stability: main result [icnp 2013]

analyzing interdomain routing dynamics is

as hard as

analyzing a computer program

stability: implications [icnp 2013]

 no SAT solvers (much harder than many optimization problems)

• ≈ can't predict the routing outcome without letting the system run

oscillation patterns of exponential length

stability: expressiveness restrictions [icnp 2013]

a mapping exists even if:

 policies are constrained to satisfy two out of three Gao-Rexford conditions

- policies are "internal BGP" compliant

- routing is based on three simple metrics (e.g., shortest path, largest bandwidth, reliability)

security: how do local changes influence global routing? [icalp 2012]

motivations:

recent attacks on the Internet

security: motivations [icalp 2012]

security: how do local changes influence global routing? [icalp 2012]

motivations:

recent attacks on the Internet possible routers misconfigurations

security: motivations

[icalp 2012]

111,231 routes via AS22548) over a period of about 5 minutes, starting at 02:00 UTC. As luck wou

providers was supplying a direct stream of route updates to RIPE RIS's rrc15 route collector in Sao

But the consequences were far from benign: for several hours a large nu

Internet sites. Twelve months later we can take a look at what happened

security: how do local changes influence global routing? [icalp 2012]

motivations:

recent attacks on the Internet
possible routers misconfigurations
understanding routing vulnerability/predictability

security: how do local changes influence global routing? [icalp 2012]

motivations:

recent attacks on the Internet
possible routers misconfigurations
understanding routing vulnerability/predictability

three questions:

can I trigger an instability? who can hijack my traffic? how to intercept traffic?

security: can I trigger an oscillation? [icalp 2012]

routing policies:
Gao-Rexford

answer: no, every "steady" attack cannot trigger an oscillation

non-steady attacks must be part of the oscillation

security: who can hijack my traffic? [icalp 2012]

routing policies:

Gao-Rexford

attacks:

origin spoofing → BGP

available-paths → S-BGP

security: who can hijack my traffic? [icalp 2012]

```
routing policies:
```

Gao-Rexford

attacks:

origin spoofing → BGP

available-paths → S-BGP

action space:

deciding to whom neighbor to send a bogus route

security: who can hijack my traffic? [icalp 2012]

routing policies:

Gao-Rexford

attacks:

origin spoofing → BGP → easy to compute available-paths → S-BGP → hard to compute

action space:

deciding to whom neighbor to send a bogus route

marks a sharp difference between BGP and S-BGP

security: how to intercept traffic? [icalp 2012]

routing policies: Gao-Rexford

answer: announce only one available path announcing more paths may create "black-holes"

load-balancing: Equal-Split-Max-Flow problem

most deployed technique:

- packet header flow-level hash
 - no packet re-ordering
 - if many flows exist → equal-split

load on most loaded link = 4

load on most loaded link = 3

load on most loaded link = 2

load-balancing: Equal-Split-Max-Flow problem

most deployed technique:

- packet header flow-level hash
 - no TCP re-ordering
 - if many flows exist → equal-split

optimization functions:

- maximize throughput across the network
- minimize most congested link
- minimize sum of link costs

wanted: algorithm with *provable* guarantees

load-balancing: Equal-Split-Max-Flow is inapproximable for arbitrary topologies [infocom 2014]

known result [Fortz et al 2002]:

NP-hard to approximate within a factor of 2/3 real-network utilization is typically 20%.

our contribution:

NP-hard to approximate within **any** constant factor

- new amplification gap technique

load-balancing: key tool amplification operator *X*

operator X: instance $I \rightarrow$ instance I_{new}

such that

 $OPT(Inew) = OPT(I)^{2}$

load-balancing: amplifying the gap

$$OPT(I) = 1$$
 or $OPT(I) = \frac{2}{3}$ it is NP-hard to distinguish between 1 and ~ 0.6

load-balancing: amplifying the gap

$$OPT(I) = 1$$
 or $OPT(I) = \frac{2}{3}$ it is NP-hard to distinguish between 1 and ~ 0.6

$$OPT(X(I)) = 1$$
 or $OPT(X(I)) = \frac{4}{9}$ it is NP-hard to distinguish between 1 and ~**0.4**

load-balancing: amplifying the gap

$$OPT(I) = 1$$
 or $OPT(I) = \frac{2}{3}$ it is NP-hard to distinguish between **1** and ~ 0.6

$$OPT(X(I)) = 1$$
 or $OPT(X(I)) = \frac{4}{9}$ it is NP-hard to distinguish between 1 and ~**0.4**

$$OPT(X^2(I)) = 1$$
 or $OPT(X^2(I)) = \frac{16}{81}$ it is NP-hard to distinguish between **1** and ~ 0.2

• • •

load-balancing: Equal-Split-Max-Flow in data-center (DC) network topologies [infocom 2014]

d-hypercubes (bCube-like):

- NP-hard to approximate within a factor of 1-1/d

Clos networks (VL2-like):

- trivial to compute optimal (oblivious) routing
- no need for expressive routing policies
- however ...

load-balancing: routing elephants in datacenter networks

... a few large flows exist in datacenter traffic

load-balancing: routing elephants in datacenter networks

... a few large flows exist in datacenter traffic

 non-negligible probability of collision between two elephant flows

load-balancing: routing elephants in datacenter networks

... a few large flows exist in datacenter traffic

 non-negligible probability of collision between two elephant flows

our contributions:

- (1/2)-inapproximability
- (1/5)-approximation routing algorithm

conclusions

interdomain routing:

- routing expressiveness and feasibility of stability testing
- mapping technique: logic circuits
- local changes, routing predictability

intradomain routing:

- network utilization inapproximability
- routing algorithms with provable guarantees in DC
- routing large flows in DC