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Abstract | i

Abstract
The rapid growth of open-source software has increased the importance of
timely and accurate vulnerability detection. This thesis explores the use
of transformer-based models and machine learning techniques to automate
the identification of software vulnerabilities through the analysis of GitHub
issues. In this work, a novel approach is proposed by defining a new dataset
specifically for classifying GitHub issues that are relevant to the identification
of vulnerabilities. Various classification methodologies, incorporating both
Large Language Models and embedding models, are analyzed and compared.
The final solution leverages both models to optimize computational costs
while maximizing the quality of the results produced by the system. The
effectiveness of this approach demonstrates its potential for real-world
application in early vulnerability detection, which could significantly reduce
the window of exploitation for software vulnerabilities. This research
contributes to the field by providing a framework for automated vulnerability
detection that is both computationally efficient and scalable, with implications
for improving the security of open-source software ecosystems.

Keywords
Vulnerability Detection, GitHub Issues, Transformer Based Models, Large
Language Models (LLM), Embedding Models
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Sammanfattning
Den snabba tillväxten av programvara med öppen källkod har ökat vikten av
snabb och korrekt upptäckt av sårbarheter. Det här examensarbetet utforskar
användningen av transformatorbaserade modeller och maskininlärningstekni-
ker för att automatisera identifieringen av mjukvarusårbarheter genom analys
av GitHub-problem. Vi jämför flera tillvägagångssätt, inklusive zero-shot och
few-shot-inlärning med stora språkmodeller (LLM) och inbäddningsbaserade
modeller i kombination med XGBoost-klassificerare. Våra resultat tyder
på att även om individuella modeller, såsom de som är baserade på
inbäddningar eller LLM, ger värdefulla insikter, erbjuder en hybrid metod
som kombinerar dessa metoder överlägsen prestanda. Hybridmodellen
utnyttjar de effektiva och kostnadseffektiva klassificeringsmöjligheterna
hos inbäddade modeller samtidigt som resultatens tolkningsbarhet och
noggrannhet förbättras genom LLM. Studien tar också upp utmaningarna
med att bearbeta stora datamängder. Effektiviteten av detta tillvägagångssätt
visar dess potential för verklig tillämpning vid tidig upptäckt av sårbarheter,
vilket avsevärt skulle kunna minska exploateringsfönstret för sårbarheter i
programvara. Denna forskning bidrar till fältet genom att tillhandahålla ett
ramverk för automatisk sårbarhetsdetektion som är både beräkningseffektivt
och skalbart, med implikationer för att förbättra säkerheten för ekosystem med
öppen källkod.

Nyckelord
Sårbarhetsdetektering, GitHub Issues, transformatorbaserade modeller, stora
språkmodeller (LLM), inbäddningsmodeller
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Chapter 1

Introduction

Innovation and technological progress are leading us towards a comprehensive
digitalization of our world. This digital transformation offers countless
advantages, such as allowing the exchange of information at an unparalleled
speed. However, this advancement is not without drawbacks, particularly
related to the exposure to cybersecurity risks. It is easy to recognize that
the development and consistent updating of software often leads to the
potential presence of bugs and vulnerabilities. As such, there is a continuous
process of software refinement and repair following the discovery of potential
vulnerabilities.

Different methods are employed to detect vulnerabilities, which range from
lower-level tests on the executed code to simulations of possible scenarios
aimed at penetrating or disrupting the system. Despite these measures, it is
still insufficient to prevent the presence of bugs or vulnerabilities in the final
software. Among these, Zero-day vulnerabilities pose a particularly serious
threat. These are undiscovered flaws in applications or operating systems, for
which no defense or patch exists because the software manufacturer is unaware
of their presence. As highlighted in Google’s Threat Analysis Group’s
March 2024 report, there has been a marked increase in the exploitation of
such vulnerabilities, underscoring the growing importance of proactive threat
detection[1].

Traditionally, vulnerability detection has relied on a combination of expert
analysis and Artificial Intelligence (AI) techniques to sift through vast
amounts of text data, such as social media posts, darknet communications,
and other indicators. These methods, while effective, are not without
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limitations. There is a significant opportunity for advancement in this field
through the application of Large Language Model (LLM). These models have
demonstrated exceptional abilities in text interpretation and identification of
logical relationships within complex data sets, making them promising tools
to improve vulnerability detection processes[2, 3].

This work explores the potential of LLM and embedding-based models
to identify vulnerabilities through the analysis of communication channels,
specifically focusing on GitHub Issues, as they constitute a significant portion
of these communications. GitHub is a web-based platform for version
control and collaborative software development. Leveraging the advanced text
processing capabilities of these models, this work aims to determine whether
it is feasible to identify software vulnerabilities in a cost-effective and scalable
manner. The findings of this study not only demonstrate the viability of these
approaches, but also highlight their potential to significantly enhance existing
cybersecurity measures by enabling earlier detection of vulnerabilities, thus
reducing the risk of exploitation as mentioned above.

1.1 Background
LLM are a type of AI model known for their strong performance in many
Natural Language Processing (NLP) tasks[4]. AI aims to mimic human
intelligence by interpreting data and performing tasks that usually require
human thinking. These models are part of the broader field of Generative
AI, which involves creating new content such as text, images, videos, and
music [5]. Specifically, LLM focus on Language Modeling (LM) to predict
the next word in a sequence based on the likelihood of previous words. This
technology has been explored in various fields, including cybersecurity, where
it has shown promise in the task of vulnerability detection that involves an
understanding of the code’s context [6, 7, 8].

The lifecycle of vulnerabilities can be divided into three phases: Black Risk,
Gray Risk, and White Risk [9]. These stages cover the time from when a
vulnerability is discovered, through its publication, to the countermeasures
taken. The most critical phase, Black Risk, is the period between the discovery
and disclosure of a vulnerability. Accurately pinpointing the moment a new
vulnerability is discovered is challenging. According to [10], this moment
is defined as “[...] the first date when a vulnerability is described on an
information channel where the disclosed information on the vulnerability is
(a) freely available to the public, (b) published by a trusted and independent
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channel, and (c) has undergone analysis by experts such that risk rating
information is included.” After a vulnerability is disclosed, it is published
with details on the National Vulnerability Database (NVD). The later stages,
Gray and White Risk, involve the release of security patches, reducing the
threat as the vulnerability becomes known to both the software producer and
its users.

Cyber Threat Intelligence (CTI) involves knowledge and information about
potential vulnerabilities and attack methods in computer science. This field
has grown significantly with the increase in cyber attacks. According to a 2024
IBM report, exploiting known vulnerabilities is a major attack vector [11].
Keeping up-to-date with vulnerabilities and sharing this information is crucial.
Sharing typically happens through blogs, mailing lists, and social media.
Analyzing these sources can provide a broader view of the vulnerabilities and
sometimes offer early insights before official disclosures are published [12].

1.2 Problem
Given the ongoing digitization process and the increasing relevance of
cybersecurity, it has become challenging to keep up with all sources of
information. These communications can often come through social media
profiles of individual developers, proprietary blogs of software houses,
countless mailing lists, and so on. Consequently, staying updated on
cybersecurity-related matters has become not just a difficult undertaking, but
also a time-consuming task for both individuals and IT teams managing entire
systems.

In this landscape, various companies provide a service for gathering
information and producing regular security reports. These companies are
primarily comprised of expert teams tasked with analyzing the sources and,
through their knowledge, identifying potential security flaws. However, with
a human component, this solution inevitably involves a longer operational time
and possible room for human error in judgment.

An important question then arises: is it possible to automate this information
analysis process using LLMs?
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1.3 Purpose
This research aims to automate and speed up the process of analyzing
cybersecurity-related information from sources like GitHub. By automating
this analysis, we can help reduce the ”black risk phase,” which is the critical
period between discovering a vulnerability and publicly disclosing it. This
phase is especially vulnerable to exploitation.

In this context, LLM can play a crucial role, as they are capable of
understanding and processing text from various sources. Our focus is
specifically on GitHub issues, given its vast amount of data, to explore how
LLM can be used to identify and assess vulnerabilities more efficiently and
accurately.

1.4 Goals
The primary aim of this project is to explore and establish a robust method
to automate vulnerability detection using advanced machine learning models,
specifically focusing on analyzing GitHub issues. The project addresses
several key objectives:

• Develop and Evaluate Classification Models: Investigate the effective-
ness of various models, including transformer-based architectures for
classifying GitHub issues related to vulnerabilities.

• Assess System Performance: Measure the performance of the imple-
mented models using standard classification metrics. The goal was to
understand how well these models could detect vulnerabilities compared
to a baseline approach and evaluate their accuracy in providing detailed
vulnerability descriptions.

These goals were addressed through a series of iterative experiments
and evaluations, ultimately demonstrating the potential of machine learning
models to improve vulnerability detection processes and provide valuable
information for future research and application.

1.5 Research Methodology
This study employs an experimental research approach, characterized by
exploration, experimentation, and evaluation phases. The methodology is



Introduction | 5

designed to rigorously investigate the potential of LLM technology in the
context of vulnerability detection using GitHub issues.

The research process begins with an extensive review of relevant literature,
which provides a foundational understanding of current methodologies and
identifies gaps in existing research. This review informed the design and
development of our approach, ensuring that our methodology is grounded
in established knowledge while addressing novel aspects of vulnerability
detection.

Following the literature review, the focus shifts to data collection. Given
the nature of the research, it was crucial to curate a dataset that accurately
represents the relationship between GitHub issues and vulnerabilities. To this
end, we utilized information from the NVD, a comprehensive database that
correlates known vulnerabilities with associated issues. This dataset serves as
the basis for supervised learning, where each issue is labeled to indicate its
relevance to vulnerability identification.

The choice of methodologies, including the classification approaches applied
to GitHub issues, was driven by the need to balance effectiveness and
computational efficiency. Transformer-based models were selected for their
advanced capabilities in text interpretation and contextual analysis. The
experimental framework also includes a novel aspect of LLM usage, focusing
on their ability to extract and interpret contextual information from GitHub
issues.

In summary, the research methodology integrates a comprehensive literature
review, meticulous data collection, and advanced classification techniques to
address the challenges of vulnerability detection. The detailed execution of
these methodologies is outlined in Chapter 3.

1.6 Ethics and Sustainability
This thesis also addresses ethical and sustainability aspects related to the
research. The ability to identify vulnerabilities before traditional disclosure
dates provides a significant advantage in preventing potential cyberattacks.
Early detection of such vulnerabilities can enhance overall cybersecurity and
mitigate risks more effectively.

Moreover, this thesis proposes methodologies that minimize the use
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of computationally and energetically intensive models. By employing
simpler and more cost-effective models, we aim to reduce the environmental
impact associated with high computational demands. This approach not
only contributes to more sustainable research practices but also aligns
with the broader goal of promoting ethical and eco-friendly technological
advancements.

1.7 Delimitations
In this research, several boundaries and limitations were defined to focus
the study and manage its scope effectively. The project exclusively utilized
GitHub as the primary source of data for vulnerability detection. Although
other information channels such as Twitter and mailing lists could offer
valuable insights, these were beyond the scope of this research. This
decision was driven by the extensive use and availability of data on GitHub,
which provided a rich and relevant dataset for the purpose of evaluating the
proposed methodologies. Additionally, the focus was specifically on models
from OpenAI, excluding other potential alternatives like different transformer
architectures or custom-built models. This selective approach was intended to
streamline the experimentation and analysis, but limited the breadth of model
evaluation.
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Chapter 2

Background

This chapter aims to provide background information on the AI technologies
used, introducing key concepts on NLP and its evolution over time,
encompassing essential principles about Large Language Models (LLMs)
and their operations. Further, it elucidates the process of identifying and
processing software vulnerabilities.

2.1 Natural Language Processing
NLP is a subcategory of AI, which has gained increased recognition in recent
years. Its primary objective revolves around endowing machines with the
capacity to process information encoded in written text. This field represents
a junction between computer scientists and other professionals, including
linguists and philosophers. Language can be defined as a set of rules or
an array of symbols combined and used for information transmission or
broadcasting [13], thus portraying it as a powerful tool capable of embodying
abstract concepts. NLP can be further subdivided into two main categories:
Natural Language Understanding (NLU) and Natural Language Generation
(NLG) [13]. NLU primarily focuses on extracting information from the text,
such as concepts, emotions, entities, and so forth. Conversely, NLG concerns
the generation of logically coherent text, capable of encapsulating information
in natural language.

2.1.1 Recent developments
An important milestone in this field was achieved in the early 2000s, with the
advent of the Neural Language Modeling mechanism. This method proposed
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by Bendigo et al. [14] involves the use of a feed-forward neural network to
contemporaneously learn a representation for each word (similarity between
words) and the probability function for sequences of words. In simpler terms,
it proposed the concept of using a Neural Network to predict the probability of
each subsequent word in the sequence provided to the model. Subsequently,
in 2008, Collobert et al. [15] proposed a solution using Deep Neural Network
(DNN) in a convolutional model. The paper suggested training the model on
multiple types of NLP tasks concurrently. These tasks included part-of-speech
tagging, chunking, named entity recognition, and semantic role labeling.
The model was composed of the following layers: Lookup table layer,
convolutional layer, max over-time pooling layer, and fully connected layers.
In 2013, Mikolov et. al. [15] published a revolutionary methodology that
significantly improved the generation of embeddings for word identification.
This approach paved the way for realizing a more pragmatic relationship
between words with similar semantic meanings or those logically correlated.
An example provided in the paper demonstrates how their model established
a relation between the names of states and their capitals. In 2014, Google
presented a novel approach. They advocated for a method that shifted focus
from individual words to sequences [16].

Figure 2.1: Evolution of NLP[17]

In 2015, a groundbreaking approach was proposed when Bahdanau et al.
[18] introduced the concept of an ’attention’ mechanism, where networks
can determine what to focus on relative to their current hidden state. Given
the importance of this development in the progression of NLP, it is worth
exploring the topic further.
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2.1.2 Attention mechanisms
The attention mechanism has proven to be a pivotal moment in the field of
Deep Learning (DL) and NLP. It allows us to optimize the inputs we provide
to models, transmitting only truly effective information. This mechanism was
first proposed as a solution to the translation of fixed- and limited-length text
[18]. This approach diverges significantly from the fundamental encoder-
decoder because it does not strive to encode an entire input sentence into
a single fixed-length vector. Instead, it encodes the input sentence into a
sequence of vectors, selectively choosing a subset of these vectors to decode
the translation.

Figure 2.2: Heatmap of attention from [19]

Consider the case in which our input is a list of words, attempts have
been made over the years to represent word meanings in latent space with
increasing precision [15]. However, the same words can have different
meanings if placed in a different context. The aim of attention is therefore
to establish a relationship between each specific word and the rest of the
context, consequently modifying its representation in the latent space [20].
From its initial implementation, the attention mechanism has swiftly adapted
for various tasks. The most popular attention mechanism implementation for
LLM involves the use of a set of vectors, specifically Query, Key, and Value
for each embedding. In practice, the attention function is computed on a set of
queries simultaneously, all condensed into a matrix, Q. The keys and values
are likewise collectively arranged into matrices, K and V respectively [21].

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V (2.1)

Two types of attention mechanisms can be identified: dot-product attention
and additive attention. They differ on how the initial embedding is updated.
Empirical findings have shown that for large values of d (which corresponds
to the dimension of keys, values, and query), the additive method tends to
outperform the multiplicative one [22].
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2.2 Large Language Models
LLMs are defined as neural network models that have been trained on a large
volume of text. Specifically, these models integrate two subgroups of AI -
DL and NLP, with a focus on tasks related to the natural language generation.
The foundation of LLMs is the Transformer architecture which is known for
its scalability and adaptability to various tasks. Several private companies,
notably OpenAI, are significantly contributing to the research on these models.
One such contribution by OpenAI is making these models publicly available
through ChatGPT. One of the primary characteristics of these models is the
size as the number of parameters in these models often exceeds billions.
Examples of such models are Generative Pre-trained Transformer (GPT) series
and LLaMA 2 [23]. This extensive parameter count allows the models to
capture a wide variety of patterns and links from the data they learn from,
contributing towards improved performance in their associated tasks.

2.2.1 Deep Neural Networks
To gain a comprehensive understanding of what LLMs are, it is necessary to
explore the neural networks that comprise this model. Deep Neural Networks
are part of the subfield of DL, which in turn falls under the larger umbrella
of Machine Learning (ML). At the core of this field is the concept of using
neural networks not only to perform a given task based on features, but also
to assign the machine the role of identifying these features, which may even
be incomprehensible to humans. Contrary to conventional machine learning,
where models are often requiring meticulous and specific feature engineering,
deep learning represents a significant evolution due to its use of advanced
representation learning methods. Deep learning models leverage architectures
with multiple representation layers, known as deep neural networks, to
automatically and hierarchically extract pertinent features from the data. This
approach allows models to learn directly from raw data, eliminating the need
for extensive domain knowledge [24]. These networks are inspired by the
structure and connections of neurons within our brains. They are composed
of an input layer where data are fed into the model, a series of hidden layers
designed to extrapolate patterns, and an output layer where the format varies
depending on the task to be performed [25]. Neurons are the basic component
of these networks and are responsible for processing information. More
specifically, they receive input signals, process them using a specific activation
function, and propagate the signal through an output. They are interconnected
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with each other via weighted connections. The weights of these connections
are known as parameters. The values associated with these parameters are
calculated using the backpropagation algorithm during the model training
phase.

Figure 2.3: An illustration of the Transformer’s architecture, reveals a multi-
layered network with interconnected layers. [26]

2.2.2 Transformers
Building upon the concept of attention, a new model architecture known
as Transformer was proposed in 2017[21]. Initially designed for tasks of
translation, it has proven to be remarkably versatile, and adaptable to many
tasks beyond the sphere of Natural Language Processing (NLP). This model
was designed to optimize prior models that relied on the use of recurrent neural
networks, which made them notably complex and difficult to train. Unlike
their predecessors, Transformers are easily scalable and simpler to train due to
their inherent parallelization capabilities. The original implementation follows
an encoder-decoder structure. The encoder maps an input sequence to an
internal representation, whereas the decoder yields a sequence of results, each
produced in succession.

For a high-level analysis of this architecture, it is worth examining the
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Figure 2.4: Transformer - model architecture from the paper “Attention is All
You Need” [21]

various components that constitute its structure. Firstly, let’s consider the
input and output embedding block, which maps each token to a unique
vector, referred to as an ’embedding’. This vector embodies the meaning
of the individual token. Each embedding is then coupled with a positional
embedding, enabling the model to track the position of each token. Following
this, there is a series of Multi-Head Attention and Normalization layers. The
term ”Multi-Head” can be attributed to the mechanism whereby multiple
attention layers operate simultaneously on independent linear projections
of the input embeddings. Each of these attention heads, by focusing on
different parts of the input, contributes unique contextual insights, a collective
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aggregation of which is remarkably effective at understanding complex
patterns and relationships within the data. Moreover, the parallelizable nature
of these layers significantly enhances the computational efficiency of the
model. This model generates a probability distribution over the potential
output vocabulary[21].

2.2.3 Encoder-only models
Encoder-only models are based upon the mechanism of transformers, enabling
the representation of context and meaning in a dense vector form for a sequence
of characters. This type of model has been found to be highly beneficial for
a vast number of tasks within Natural Language Processing (NLP) as denoted
by NLP. Among this genre of models, we encounter BERT [27], RoBERTa,
and the text similarity engine from OpenAI [28]. The state-of-the-art for these
types of models has been achieved through the extensive use of unsupervised
learning on large datasets. Indeed, it has been demonstrated that models
trained in this manner tend to outperform even those specialized in a single
domain [28].

Figure 2.5: Embedding creation process. Image from OpenAI [29]

2.3 Security vulnerabilities
Security vulnerabilities are critical flaws or weaknesses in software systems
that can be exploited by attackers to compromise the integrity, confidentiality,
or availability of a system. These vulnerabilities arise from various sources,
including coding errors, design flaws, misconfigurations, and inadequate
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security measures. Understanding and addressing these vulnerabilities is
fundamental to maintaining robust cybersecurity and protecting systems from
malicious threats. In general, vulnerabilities can affect any component
of a software system, including operating systems, applications, network
protocols, and hardware. They often provide an entry point for attackers
to execute unauthorized actions, such as gaining unauthorized access
to data, escalating privileges, or disrupting system operations. The
impact of a vulnerability ranges from minor inconveniences to severe
breaches that result in significant financial loss or reputation damage.
Multiple stakeholders are involved in the discovery and management of
vulnerabilities, including software developers, security researchers, and
system administrators. Effective management typically includes identifying
vulnerabilities through various methods such as static and dynamic analysis,
penetration testing, and monitoring for reported issues. Once identified,
vulnerabilities need to be assessed and addressed using appropriate mitigation
strategies to alleviate their severity and potential impact.

2.3.1 Vulnerability lifecycle
The lifecycle of a security vulnerability encompasses several distinct phases
that reflect the progression from discovery to resolution. Understanding these
phases is crucial for effective vulnerability management and for implementing
appropriate countermeasures to mitigate potential risks.

The Black Risk phase begins when a vulnerability is initially discovered
but has not yet been publicly disclosed. During this period, the vulnerability
is known only to a selected group of individuals, such as the discoverer
or potentially malicious actors who might exploit it. Identifying the exact
moment when a vulnerability enters the Black Risk phase is often challenging.
As described by [10], this phase starts the first date a vulnerability is
described on an information channel where the disclosed information on the
vulnerability. In this phase, the focus is on understanding the vulnerability’s
potential impact and assessing risks while keeping the information confidential
to prevent exploitation. The main objective is to prevent the vulnerability from
being exploited until it can be properly addressed.

The Gray Risk phase starts with the public disclosure of the vulnerability.
At this point, details about the vulnerability are made available through
security advisories, public databases like the NVD, or other channels. The
disclosure of the vulnerability allows for the development and distribution
of mitigation strategies, such as security patches or workarounds. Although
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public disclosure increases awareness and drives the development of solutions,
it also means that attackers have access to information that could be used to
exploit the vulnerability before systems can be adequately protected.

Finally, the White Risk phase follows the disclosure and involves the
period after a vulnerability has been publicly known and mitigations have been
implemented. During this phase, the vulnerability is well-documented, and
countermeasures such as security patches or updates are in place to address
the issue. The immediate threat posed by the vulnerability is significantly
reduced as both the software producers and users are aware of the issue and
have the means to protect against it. However, ongoing vigilance is necessary
to ensure that all affected systems are updated and to monitor for any residual
threats or new vulnerabilities that may emerge.

Continuous monitoring and CTI play a vital role throughout these
phases. CTI involves gathering and analyzing information about potential
vulnerabilities and emerging threats. It helps organizations stay informed
about new vulnerabilities and threats, facilitating timely responses and
proactive security measures [11, 30]. By understanding and effectively
managing the lifecycle of vulnerabilities, organizations can enhance their
cybersecurity posture and better prepare for and respond to potential threats.

Figure 2.6: Lifecycle of a vulnerability [10]

2.3.2 CVE Identifiers
Common Vulnerabilities and Exposures (CVE) identifiers are a crucial
component in the field of cybersecurity, providing a standardized method for
identifying and cataloging vulnerabilities and exposures in software systems.
This system facilitates the exchange of information about vulnerabilities and
helps ensure that different organizations and tools refer to the same issues
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consistently. A CVE identifier is a unique, standardized reference assigned
to a specific vulnerability or exposure. The CVE system, managed by the
MITRE Corporation, assigns these identifiers to vulnerabilities based on a
well-defined process[31]. Each CVE identifier includes a unique number,
a brief description of the vulnerability, and relevant metadata such as the
affected products, the severity of the issue, and potential impacts.

2.3.2.1 Process of Assigning CVE Identifiers

The process for assigning CVE identifiers involves several steps[32]:

1. Discovery: A vulnerability is discovered and reported either by security
researchers, vendors, or other stakeholders.

2. Request Submission: A request for an identifier is submitted.

3. Evaluation: The CVE Numbering Authorities (CNA) evaluates the
request and ensures that the vulnerability is unique and meets the criteria
for a CVE identifier[31].

4. Assignment: Once approved, a CVE identifier is assigned and
publishes the associated information in the database.

2.4 Related work

2.4.1 Related work on vulnerability detection via
social networks

In recent years, the frequency and sophistication of cyber attacks have
significantly increased, while organizations face ever-shorter time frames to
respond effectively. To address these evolving threats, organizations have
improved their vulnerability management processes, and increased the internal
dissemination of security information. Vulnerability information is also
disseminated through social media platforms and other informal channels
[33]. It is suggested that vulnerabilities may be discussed on Twitter prior
to their official public disclosure [34]. Despite these observations, there is a
lack of empirical research verifying this assumption. Some studies addresses
this gap by extracting Tweets that contain vulnerability-related information
and evaluating whether Twitter offers a timelier source of vulnerability
information[34, 35].
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2.4.1.1 The Tweet Advantage

To investigate this hypothesis, the paper ”The Tweet Advantage” [35] analyzed
tweets containing CVE identifiers within a specific timeframe. As mentioned
earlier, CVE identifiers are often assigned before official public disclosure on
formal channels. The study collected 709,880 tweets between May 23, 2016,
and March 27, 2018, and mapped these tweets to the vulnerability lifecycle
model. The analysis revealed that a significant portion of vulnerabilities
were discussed on Twitter before their public disclosure by official entities
or vendors. Specifically, one quarter of the vulnerabilities examined
were mentioned on Twitter before being officially announced. The study
demonstrated that Twitter can provide a valuable time advantage for reacting to
newly discovered vulnerabilities. Additionally, Twitter serves as a platform for
security crowdsourcing, where information reaches a wide audience of users
and organizations.

Figure 2.7: Tweet-Disclosure Pattern. The Y-axis displays the number of
tweets, while the X-axis represents the timeline in days, with 0 indicating
the time of public disclosure. Red bars indicate the total number of tweets
(excluding retweets), and blue bars show the count of retweets[35].
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Chapter 3

Methodology

This chapter outlines the methodology employed in this research. Section 3.1
provides an overview of the research process and the execution of the project.
Section 3.2 focuses on the data collection process, detailing the specific
choices made in designing and implementing the data pipelines. Section
3.3 describes the classification methodologies used to analyze and categorize
GitHub issues.

3.1 Research Process
This research is fundamentally grounded in a rigorous process of inquiry,
exploration, and validation of experiments related to the potential of LLM
technology. This cutting-edge technology is currently attracting significant
interest and research efforts but the objective of detecting vulnerabilities
using data collected from sources such as blogs, mailing lists, and similar
platforms is relatively novel and remains largely unexplored. Given the
considerable flexibility in designing the system, various structures were
evaluated throughout the development process. Since this approach is both
innovative and uncharted, a thorough review of the literature was crucial to
establish a strong foundation. Building on this, creating a dataset that met our
specific requirements was essential. This dataset was designed to correlate
vulnerabilities effectively with GitHub issues found in open-source code. Our
work introduces a novel method for identifying vulnerabilities through the
analysis of GitHub issues, additionally, this research aims to showcase the
capabilities of LLMs in extracting and interpreting contextual information.
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Figure 3.1: Methodology process

3.2 Data Collection
This chapter is dedicated to the process of acquiring the data used for
experimentation. As mentioned above, a classification approach was applied
to GitHub issues based on their relevance to identifying vulnerabilities. Given
that this approach involves supervised learning, it was essential to label each
issue in the dataset to indicate its relevance to the vulnerability identification.
To achieve this, information from the NVD was utilized. This database is
crucial as it establishes a correlation between the vulnerabilities and the issues
created at the time of problem discovery.

3.2.1 The National Vulnerability Database (NVD)
The National Vulnerability Database (NVD) is a comprehensive resource
for information on known vulnerabilities in software and hardware systems.
Maintained by National Institute of Standards and Technology (NIST),
the NVD provides a standardized platform for identifying and tracking
vulnerabilities through CVE system. NVD serves as a central repository for
vulnerability data, offering detailed descriptions, severity ratings, and impact
assessments. Each entry in the database includes critical information such
as CVE-ID, affected software versions, and potential impact. Additionally,
NVD provides links to further resources, such as issue tracking, released notes,
and vendor advisories. The database is updated regularly to include new
vulnerabilities as they are discovered and reported. NVD is widely used by
cybersecurity professionals, researchers, and organizations to stay informed
about potential security threats and to aid in vulnerability management
processes. With the help of NVD, users can access reliable and up-to-date
information to enhance their security measures and responses.

3.2.2 GitHub Issues
GitHub Issues is a feature within the GitHub platform that allows users to track
and manage tasks, bugs, and feature requests related to software projects. It
provides a collaborative environment where developers and contributors can
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report problems, suggest improvements, and discuss solutions. Each issue on
GitHub is a record of a specific problem or request related to a repository.
Users can also comment on issues, attach files, and link related issues or pull
requests. GitHub Issues plays a crucial role in the open-source development
process by serving as a communication tool between developers and the
community. It enables users to provide feedback, report vulnerabilities, and
contribute to the development and improvement of software projects. As a
result, GitHub Issues serves as a valuable source of real-time information on
software issues, including security-related concerns, which can be used for
vulnerability detection and analysis.

3.2.3 Data selection
A critical aspect of this work was the identification and appropriate handling
of the dataset used for vulnerability recognition. Given that the proposed
approach is novel and lacks precedent in the literature, various formats
and methods were experimented with to tackle the problem. The chosen
methodology involves a model designed to classify whether an issue is relevant
for identifying a vulnerability.

The dataset collection was divided into several pipelines that transformed
data from sources such as the NVD and GitHub into a final dataset suitable
for classification. Throughout this process, several decisions and assumptions
were made to ensure that the dataset was balanced and flexible. This approach
aimed to enhance the effectiveness and adaptability of the dataset for the
classification task.

3.2.3.1 NVD pipeline

This initial pipeline aims to extract all information related to vulnerabilities
published between January 1, 2019, and June 2, 2024. The extracted data
includes details such as CVE-ID, description of the vulnerability, evaluation
metrics, and the reference list. The impact metrics used to define the
severity of a vulnerability are generated by the Common Vulnerability Scoring
System (CVSS). Specifically, this research focuses on the Impact Score, which
describes the potential effects an exploit of the vulnerability may cause at
worst.

Vulnerabilities under examination or rejected were excluded from the
dataset. After the pipeline, we collect a total of 113,735 vulnerabilities. For
each remaining vulnerability, the list of references was extracted and used
to create a consolidated dataset that correlates these references with their
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respective CVE-IDs. The distribution of reference types is illustrated in Table
3.1. Meanwhile, Table 3.2 shows the frequency of domains used in these
references. From this data, we can infer that GitHub and Issue Tracking are
integral resources for defining and understanding vulnerabilities.

Reference Type Count
Third Party Advisory 86,801
Vendor Advisory 39,607
Exploit 35,246
Patch 32,283
Issue Tracking 12,364
VDB Entry 12,019
Mailing List 8,091
Permissions Required 6,198
Release Notes 5,646
Product 3,905
Broken Link 2,858
Mitigation 1,697
US Government Resource 1,003

Table 3.1: Distribution of Reference Types in the Vulnerabilities Dataset

Domain Count
github.com 42,165
git.kernel.org 10,461
vuldb.com 8,332
lists.fedoraproject.org 4,790
patchstack.com 4,256
lists.apache.org 3,805
www.zerodayinitiative.com 3,620
packetstormsecurity.com 3,523
portal.msrc.microsoft.com 3,340
plugins.trac.wordpress.org 3,258
wpscan.com 3,238
exchange.xforce.ibmcloud.com 3,048
www.wordfence.com 2,752
www.openwall.com 2,700
bugzilla.redhat.com 2,531

Table 3.2: Top Frequent Domains Used in References
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3.2.3.2 GitHub pipeline

Throughout the references, a total of 6,626 GitHub repositories were cited
within the time frame under examination. To manage the dataset effectively,
it was necessary to narrow down the number of repositories. To achieve this,
the top 50 repositories with the highest number of related vulnerabilities in the
last year were selected. This selection aims to retain the maximum number of
repositories within the dataset that are associated with tracking issues.

Owner Repository References
gpac gpac 260
axiomatic-systems Bento4 93
jerryscript-project jerryscript 91
ImageMagick ImageMagick 76
LibreDWG libredwg 70
strukturag libde265 52
kubernetes kubernetes 43
openlink virtuoso-opensource 33
libming libming 29
Piwigo Piwigo 24

Table 3.3: Top 10 GitHub Repositories cited in the CVE references from
January 1, 2019, to June 2, 2024.

In each selected repository, the goal is to identify tracking issues cited
in the vulnerability references to use them as targets for classification.
Additionally, other issues from the same repository will be proportionally
included to enrich the classifier with non-vulnerability-related issues.

The final step in this phase involved filtering the dataset by removing
repositories that did not contain a sufficient number of issues and eliminating
any issues that exceeded 8,191 tokens. This token limit corresponds to the
context window size of one of the classification models used.

3.3 Classification methodologies
Since this is a novel task for models like LLMs, a variety of classification
methods were explored to address the challenge of classifying issues. In this
chapter, we will delve into three proposed solutions that utilize different types
of models, including embedding and encoding techniques. Each of these
approaches leverages advanced methodologies to enhance the effectiveness
of classification in identifying vulnerabilities.
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The first solution employs embedding models, which transform issues into
dense vectors in a high-dimensional space, capturing semantic similarities
between them. The second approach utilizes encoding models that process
sequences of tokens to encode contextual information, thereby improving the
model’s ability to understand the nuances of each issue. Lastly, we will explore
a hybrid method that combines elements of both embedding and encoding
strategies to achieve a more comprehensive classification.

3.3.1 Classification Using Embedding Models
Embedding models convert text into dense, high-dimensional vectors that
capture semantic relationships and contextual nuances. These models
represent each issue as a vector in a continuous space, allowing us to
identify similarities and patterns that might not be evident in the raw text.
Embedding techniques are particularly useful in capturing the underlying
meaning of issues by placing similar issues closer together in the vector
space. This representation helps in discerning the relevance of issues to
vulnerabilities by analyzing the geometric relationships between vectors. For
the embedding generation, we utilized the text-embedding-3-large
model from OpenAI[29].
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Figure 3.2: t-SNE plot of the dataset showing the distribution of issues.
Relevant issues are marked in blue, while non-relevant ones are in orange.
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Figure 3.2 illustrates the distribution of our dataset, revealing how issues
cluster within the embedding space and indicating the potential for effective
classification.

For the classification task, the XGBoost model was employed[36]. XGBoost
is a robust gradient-boosting algorithm renowned for its high performance
in classification tasks. Its selection was based on its ability to handle
large datasets, its resilience to overfitting, and its efficiency in generating
accurate predictions. By using the embeddings as input features, the model
predicts whether an issue is relevant to a vulnerability, thereby enhancing
the classification process through the utilization of the structured information
derived from the embedding models.

The prompt used for feeding data into the embedding model is as follows:

Prompt template: display issue

This is a GitHub Issue
repo:{repo_name}
owner:{repo_owner}
Title : {title}
— start of the body —
{body}
— end of the body —

Figure 3.3: Embedding classifier



26 | Methodology

3.3.2 LLMs-based classifiers
In this methodology, LLMs are employed to determine whether a GitHub
issue is relevant for identifying a vulnerability. The utilization of LLMs
offers several advantages, such as a potentially more nuanced analysis of
the provided context and the capability to request the model to provide a
description of the problem along with a confidence score. This technique of
prompt engineering, which involves asking the model to reason through the
problem before providing an answer, is known as Chain-of-Thought (CoT)
prompting [37]. CoT prompting enables complex reasoning capabilities by
facilitating intermediate reasoning steps.

For this approach, the model is prompted to provide the following
information in a JSON format:

• gpt_description: Describe the detected vulnerability, or write
None if no vulnerability is detected.

• gpt_confidence: An integer from 1 to 5 indicating the level of
confidence in the detection (1 = very low, 5 = very high).

• gpt_is_relevant: A boolean indicating whether the issue is
relevant (true) or not (false). An issue is considered relevant only
when gpt_confidence is 5.

By using this approach, the model generates a detailed description and
a confidence score for each issue, which helps in evaluating the relevance
and accuracy of the classification process. The generated description is then
compared with the official description of the NVD vulnerability itself. This
comparison helps assessing whether the model has accurately detected and
described the vulnerability, providing an additional layer of verification for
the classification process.
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System prompt

You are a cybersecurity assistant tasked with identifying potential
vulnerabilities by analyzing GitHub issues. Your goal is to review each
issue and determine whether it indicates a security vulnerability. If you
are confident that a vulnerability exists, provide a detailed description
of the issue and mark it as relevant. To minimize false positives,
carefully analyze the context of the message to assess if the issue is
communicating a vulnerability.

In addition to identifying security vulnerabilities, you should also
recognize cases where the issue is not a vulnerability. These may
include failing tests, minor bugs, or issues related to functionality that
do not present security risks.

Please format your response in JSON with the following fields:

gpt_description: Describe the vulnerability detected, if any. If
no vulnerability is detected, write None.

gpt_confidence: An integer from 1 to 5 indicating your level of
confidence in the detection (1 = very low, 2 = low, 3 = medium, 4 =
high, 5 = very high).

gpt_is_relevant: A boolean indicating whether the issue is relevant
(true) or not (false). An issue is considered relevant only when
gpt_confidence is 5.

3.3.2.1 Zero-shot learning classification

Zero-shot learning leverages pre-trained models’ ability to generalize from
their broad training data to new, unseen tasks[38]. This approach relies on
the model’s inherent knowledge and its capability to infer the relevance of an
issue based on the textual description provided.

In this method, the model is given the system prompt that outlines the task
and a message containing the issue under examination.
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3.3.2.2 Few-Shot learning classification

Few-shot learning leverages the capacity of pre-trained models to adapt to
new tasks with only a small number of annotated examples. This approach
builds on the model’s existing knowledge and enhances its performance by
providing specific examples that illustrate the task at hand. In this method,
a system prompt is designed to outline the classification task, accompanied
by a few representative examples. These examples consist of issues labeled
with their relevance to vulnerabilities, which guide the model in understanding
the classification requirements. The descriptions of vulnerabilities used in the
examples are derived from NVD, which helps the model learn the stylistic and
descriptive conventions used in vulnerability descriptions.

3.3.3 Combined classification approach
The final methodology combines both embedding and LLMs techniques to
optimize vulnerability detection. This hybrid approach aims to provide a
more robust and efficient classification system. Initially, issues are processed
using embedding models, this step allows for a preliminary filtering of issues,
grouping similar issues together and identifying those that may be relevant
to vulnerabilities based on their vector representations. Following this initial
filtering, the refined issues undergo a more detailed analysis using LLMs.
By combining these approaches, the methodology effectively reduces the
computational load on the LLMs, as only a subset of the issues filtered
by the embedding classifier resulting in a more cost-effective and efficient
classification process.

Figure 3.4: Combined solution
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3.4 Performance Metrics
In this study, the evaluation of the classification models was conducted using
standard performance metrics commonly employed in machine learning tasks,
specifically in the context of classification problems. The metrics used include
Precision, Recall, F1-Score, and overall Accuracy.

Class 1 was designated for all issues relevant to vulnerability detection,
while Class 0 was used for issues that are not relevant.

• Precision measures the proportion of true positive predictions among
all positive predictions, reflecting the model’s ability to avoid false
positives. In our case, Precision indicates the proportion of issues
identified as relevant that are actually relevant.

Precision =
TP

TP + FP

where TP is the number of true positives and FP is the number of false
positives.

• Recall, also known as sensitivity or true positive rate, measures the
proportion of true positive predictions among all actual positives,
indicating the model’s effectiveness in capturing relevant instances.
Thus, Recall measures the model’s ability to correctly identify issues
relevant to vulnerability detection.

Recall =
TP

TP + FN

where FN is the number of false negatives.

• F1-Score is the harmonic mean of Precision and Recall, providing a
single metric that balances the trade-off between them. This score
is particularly useful in cases of uneven class distribution, as in our
scenario.

F1-Score = 2 · Precision · Recall
Precision + Recall

In addition to the per-class metrics, the overall Accuracy of the model
was calculated. Accuracy is defined as the proportion of correct predictions
(both true positives and true negatives) among the total number of predictions,
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providing a general measure of the model’s performance across all classes.

Accuracy =
TP + TN

TP + TN + FP + FN

where TN represents the true negatives.
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Chapter 4

Results and Analysis

This chapter provides an in-depth analysis of the results obtained from
applying the various classification methodologies introduced earlier for
evaluating GitHub issues in terms of their relevance to vulnerability discovery.
The analysis will focus on several key aspects: the performance metrics
of binary classification, including accuracy, precision, recall, and F1 score;
the computational cost associated with each method; and the quality of
vulnerability descriptions generated by approaches utilizing Large Language
Models LLMs. By examining these elements, the chapter aims to offer
a comprehensive evaluation of the effectiveness, efficiency, and practical
implications of the different classification strategies.

4.1 Baseline Approach
To establish a benchmark for comparison with the limited existing imple-
mentations in the literature, a baseline approach was developed based on
techniques described in the paper ”The Tweet Advantage”[35]. This approach
utilizes statistical methods focused on identifying specific keywords that
are indicative of vulnerability descriptions. The original method involved
the use of regular expressions (regex) to detect CVE-IDs within the text.
For this implementation, additional keyword detection was incorporated,
including terms such as ”vulnerability”, ”NVD” and ”security” to enhance
the identification of relevant issues.

Although the reported accuracy of 0.83 might appear to be high, as shown
in 4.1, it is important to recognize that this dataset is significantly imbalanced,



32 | Results and Analysis

Table 4.1: Detailed classification metrics for baseline approach

Classification Metrics

Class Precision Recall F1-Score Support

0 0.85 0.96 0.90 1 414
1 0.64 0.26 0.37 338

Accuracy 0.83

with a predominant number of negative class instances, hence not relevant
issues. Therefore, the overall accuracy metric might not fully reflect the
model’s performance, especially regarding the minority class.

To more accurately assess the effectiveness of the baseline approach, it
is crucial to focus on the metrics related to the positive class (class 1). The
precision, recall, and F1-score for the True class indicate how well the model
identifies relevant instances of vulnerabilities. Specifically, the recall of 0.26
for the True class suggests that the baseline model has limited success in
identifying positive instances.

Figure 4.1: Classification performance across different issue sizes, measured
in tokens and divided into 30 bins using the tiktoken tokenizer.
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4.2 LLM-Based Classifiers
We now turn to the first novel approach adopted for this task. As previously
outlined, two distinct techniques were employed: zero-shot learning and few-
shot learning. These models, leveraging their text interpretation capabilities,
were used to assess each issue’s relevance to the discovery of vulnerabilities.
For each issue, the models delivered a confidence assessment regarding its
relevance to vulnerability discovery. When the confidence was high, the
model also generated a detailed description of the associated vulnerability.
This process not only provided a binary relevance assessment but also offered
a useful explanation of the nature of the vulnerability, if present.

LLM utilized for this task is the ”GPT-4o-mini” from OpenAI. Due to its
speed and powerful capabilities at a relatively low cost of use, it is well-suited
for analyzing large volumes of data. These characteristics make it an ideal
model for handling extensive datasets and performing in-depth vulnerability
assessments.

Model Class Precision Recall F1-Score Support Accuracy

Zero-Shot 0 1.00 0.72 0.84 1 414 0.78
1 0.46 0.99 0.63 338 0.78

Few-Shot 0 0.99 0.75 0.85 1 414 0.79
1 0.48 0.98 0.65 338 0.79

Table 4.2: Detailed Classification Metrics for Zero-Shot and Few-Shot Models

Both the zero-shot and few-shot learning approaches demonstrate distinct
strengths and weaknesses. The zero-shot model exhibits high precision for
non-relevant issues, effectively minimizing false positives in this category.
However, it faces challenges with false positives for relevant issues, indicating
a trade-off between precision and recall. The few-shot learning model,
while still exhibiting a notable rate of false positives, shows an improvement
in precision for relevant issues compared to the zero-shot model. This
approach also achieves a better overall F1-score, indicating a more balanced
performance between precision and recall. Despite this improvement, both
models display a high recall, suggesting a tendency towards flagging issues as
relevant more frequently than may be accurate. During the evaluation phase,
numerous prompts were tested in an effort to mitigate this bias towards positive
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predictions. Despite these adjustments, the general tendency of both models
remains towards positive classification.

Figure 4.2: Classification performance of LLM-based model with few-shot
learningacross different issue sizes, measured in tokens and divided into 30
bins using the tiktoken tokenizer.

Model TP TN FP FN Total

Zero-Shot 333 1 025 389 5 1 752
Few-Shot 330 1 061 353 8 1 752

Table 4.3: Counts of True Positives, True Negatives, False Positives, and False
Negatives for Zero-Shot and Few-Shot Models

4.2.1 Descriptions similarity
As previously mentioned, one of the key advantages of utilizing LLM is their
ability to generate and elaborate on textual content. In our experiment, we
leveraged this capability by requesting the model to provide a description of
the identified vulnerability. This was intended to prompt the model to reason
through the classification of each issue more thoroughly. By comparing the
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Figure 4.3: Zero-shot: Similarity distribution of the description generated for
correct classified vulnerabilities

Figure 4.4: Few-shot: Similarity distribution of the description generated for
correct classified vulnerabilities

Metric Zero-Shot Few-Shot Delta %

Mean Similarity 0.691 0.746 7.8 %
Median Similarity 0.695 0.753 8.3 %

Table 4.4: Similarity Scores and Improvement Delta for Zero-Shot and Few-
Shot Models

generated descriptions with those available in the NVD, we aimed to assess
the accuracy and relevance of the model’s classifications.
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As illustrated in Figures 4.3 and 4.9, using examples to improve the
description of vulnerabilities has achieved the desired effect. With an average
similarity score of 7.8%, the model that incorporated example descriptions
effectively learned the style and format of those found in the NVD.

4.3 Embedding based Classifiers
We now turn to analyzing the results obtained from the approach that leverages
embeddings and XGBoost for accurate GitHub issue classification. For
generating embeddings, we employed OpenAI’s ”text-embedding-3-large”
model. This model supports a maximum context window of 8191 tokens.
Consequently, during the dataset preparation phase, issues exceeding this
token limit were excluded.

Figure 4.5: Classification performance of Embedding based classifier across
different issue sizes, measured in tokens and divided into 30 bins using the
tiktoken tokenizer.

Since the embedding model is also based on transformer architecture, the
model focus on different parts of the input sequence, effectively capturing
contextual relationships and semantic nuances. By representing each issue as
a high-dimensional vector, the embeddings facilitate the detection of intricate
patterns and similarities that are crucial for effective classification. The
combination of these embeddings with XGBoost for classification provided a
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robust framework for analyzing the relevance of GitHub issues to vulnerability
detection.

Table 4.5: Detailed classification metrics for the embedding based approach

Classification Metrics

Class Precision Recall F1-Score Support

0 0.96 0.91 0.93 1 414
1 0.68 0.85 0.75 338

Accuracy 0.89

As shown in Table 4.5, the results obtained with this approach are very
promising. The model demonstrates a good balance, and the precision for
the positive class indicates a favorable trade-off between True Positives and
False Positives. Additionally, this method proves to be highly efficient from a
computational standpoint since the execution cost for the embedding model is
an order of magnitude lower compared to that of LLM. This efficiency makes
it a practical choice for large-scale applications like this task. It is also worth
noting that the XGBoost classifier was optimized using the hyperparameter
”scale_pos_weight.” This parameter adjusts the weight of positive samples
during training, which helps to address class imbalance by giving more
importance to the minority class. By fine-tuning this hyperparameter, the
model’s performance on the positive class was improved, further enhancing
the overall classification accuracy.

As shown in Figure 4.6, the model exhibits a high Area Under the Curve
(AUC) for the Receiver Operating Characteristic (ROC) curve. This indicates
that our model performs exceptionally well in distinguishing between relevant
and non-relevant issues. A high AUC value signifies that the model is capable
of effectively ranking positive instances higher than negative ones, which
is crucial for accurate classification in imbalanced datasets. Additionally,
the Precision-Recall (PR) curve in the same figure demonstrates strong
performance.

4.4 Combined Classification Approach
In this hybrid approach, an embedding-based classifier was used as a filter
for the Large Language Model (LLM) classifier. This method leverages the
advantages of both techniques. The embedding-based classifier provides a
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Figure 4.6: ROC and Precision-Recall curves for the XGBoost model. The
ROC curve illustrates the trade-off between the true positive rate and the
false positive rate. The Precision-Recall curve shows the relationship between
precision and recall.

Figure 4.7: Confusion matrix showing the performance of the XGBoost
classifier. The matrix displays the TP, FP, TN, and FN counts.

balanced classification, while the LLM classifier offers a detailed reanalysis
of the issues along with a corresponding description of the identified
vulnerabilities. By combining these methods, we achieve a more efficient
classification process that balances accuracy with the ability to generate
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insightful descriptions of potential vulnerabilities.

Table 4.6: Detailed classification metrics for the updated approach

Classification Metrics

Class Precision Recall F1-Score Support

0 0.96 0.91 0.93 1 414
1 0.69 0.84 0.76 338

Accuracy 0.90

Although the enhancement in classification performance compared to
the embedding-only model is relatively modest, the integration of the LLM
classifier with few-shot learning provides a more detailed analysis of the
issues. The LLM’s detailed reanalysis enhances the overall results by offering
richer insights into each issue. This combination effectively leverages the
strengths of both techniques.

Figure 4.8: Confusion matrix showing the performance of hybrid classifier.
The matrix displays the TP, FP, TN, and FN counts.
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4.5 General comparison
In this section, we compare the various methodologies applied for classifying
GitHub issues with respect to their effectiveness in identifying vulnerabilities.
The methodologies under review include the baseline approach, zero-shot
learning, few-shot learning, XGBoost classifier and combined approach.

Model Class Precision Recall F1-Score Accuracy

Baseline 0 0.85 0.96 0.90 0.83
1 0.64 0.26 0.37

LLM: Zero-Shot 0 1.00 0.72 0.84 0.78
1 0.46 0.99 0.63

LLM: Few-Shot 0 0.99 0.75 0.85 0.79
1 0.48 0.98 0.65

Emb + XGB 0 0.96 0.91 0.93 0.89
1 0.68 0.85 0.75

Combined 0 0.96 0.91 0.93 0.90
1 0.69 0.84 0.76

Table 4.7: Summary of the classification performances of all the
methodologies

When comparing all methodologies, the hybrid approach emerges as
the most effective, combining high classification accuracy with detailed
vulnerability descriptions. While the baseline approach provides a useful
benchmark, both zero-shot and few-shot learning methods demonstrate
improvements in relevance assessment, with few-shot learning performs
better. The hybrid model benefits from the strengths of the embedding
technique, which supports the approach, and integrates it with LLM reanalysis
to offer a comprehensive solution for vulnerability detection and description.
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4.6 Model Performance on Post-Knowledge
Cutoff Vulnerabilities

In this analysis, we evaluate, to the extent possible, the performance of our
model on the portion of the dataset that includes issues and vulnerabilities that
arose after the knowledge cutoff date of the GPT-4o-mini model, specifically
after October 2023[39]. As discussed in detail in the chapter on Threats to
Validity, we lack visibility into the composition of the training set used for the
LLM. Therefore, the only viable method to ensure that our solutions do not
suffer from overfitting is to evaluate the model using data that is post-cutoff.

As explained in the following chapter, it was not feasible to use such a dataset
from the outset because the model employed is relatively new, and there are
few vulnerabilities that have been reported after this cutoff date. Consequently,
while our evaluation does include a subset of data that fits these criteria, the
available dataset is quite limited.

Specifically, within our test set, there are only 29 tracking issues that are
post-cutoff and 672 normal issues. Therefore, the results obtained from this
analysis should be considered partial due to the reduced size of the dataset
used. Nonetheless, this evaluation provides critical insights into the model’s
ability to generalize to new, unseen vulnerabilities, offering a preliminary
indication of its robustness and applicability in real-world scenarios beyond
its training data.

Classification Metrics

Class Precision Recall F1-Score Support

0 0.99 0.95 0.97 672
1 0.41 0.83 0.55 29

Accuracy 0.94

Table 4.8: Detailed classification metrics for combined methodology on post
knowledge cutoff test set

The support of the new dataset, defined as the number of occurrences of
the two classes within the dataset, has significantly changed compared to the
initial dataset. Consequently, the proportion of Class 1 has shifted from 19%
to 4%. This change results in a lower percentage of relevant issues within the
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new sample, aligning more closely with a realistic scenario in a potential real-
world application. However, this disparity between the distributions of the two
datasets complicates direct comparison of the results.

4.6.1 Descriptions similarity
It is also crucial to examine the quality and relevance of the vulnerability
descriptions generated by the LLM for post-knowledge cutoff issues. This
feature is particularly valuable for understanding and addressing newly
emerging threats that were not part of the model’s training data.

Figure 4.9: Distribution of similarity scores for descriptions generated by the
few-shot model on the post-knowledge cutoff test set

Metric Few-Shot

Mean Similarity 0.756
Median Similarity 0.775

Table 4.9: Similarity Scores for the Few-Shot Model

The similarity scores across different datasets suggest that the model
effectively generalizes to new, unseen issues, reinforcing the reliability of
the model. This consistency is promising and implies that the model’s
performance is robust and not limited to the initial training set.
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Chapter 5

Discussion

5.1 Challenges
Applying transformer-based models to this problem is relatively new, making
the identification of the most effective approach a primary challenge. In a
world rich with diverse information exchange channels, concentrating on a
single source was essential for this study. GitHub was chosen due to its
extensive use and the depth of its issue tracking system, which, as shown by
analyses, is frequently referenced for vulnerabilities.

Processing large volumes of data with models that have high computational
costs necessitated the development of an efficient data filtering pipeline to
ensure the practicality of the solution in real-world applications. By utilizing
embedding models, we successfully minimized reliance on computationally
expensive LLM.

Another challenge encountered was selecting an appropriate dataset for issue
classification. It is important to note that the approach employed relies on a
subset of potentially relevant issues for vulnerability detection. Despite this
limitation, given the aim of creating a dataset with a substantial number of
entries through an automated process, this was the best compromise.

Furthermore, as this is an innovative approach to the problem, there are
several areas where performance improvements could be made. This includes
exploring more advanced classification models beyond XGBoost and refining
prompt engineering for LLM. Nonetheless, the primary goal of this research is
to demonstrate the feasibility and applicability of this approach for detecting
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vulnerabilities using GitHub issues.

5.2 Threats to Validity
An important factor to consider regarding the validity of the results is the
training of the embedding models and LLMs. These models are trained on
large amounts of data sourced from the internet. Since these models are
developed by private companies that have not disclosed detailed information
about the composition of their training datasets, it is difficult to determine
whether correlations between issues and vulnerabilities were already known
to the model.

This concern was taken into account from the outset of this research. To
mitigate this issue, the methodology employed involved using data and
information that were created after the models’ knowledge cutoff date—the
date corresponding to the most recent data used for their training. However,
we encountered a limitation: for the latest generation LLMs we intended to use
in this experiment, there were not enough vulnerabilities with corresponding
references created post-cutoff to constitute a robust test set.

Another important factor to consider is that, given this research’s focus on
the analysis of a large quantity of data, we did not manually verify each of
the issues examined or those used as ground truth. As a result, we must
assume the presence of some noise in our classifications, and it cannot be
guaranteed that the issues considered non-relevant are indeed irrelevant to
undiscovered vulnerabilities or that they have not already been associated with
a vulnerability on the NVD.

5.3 Future Work
As discussed in the challenges of this project, the primary objective of this
research was to demonstrate the effectiveness of the proposed approaches,
rather than to fully optimize the models for maximum performance. For this
reason, there is great room for improvement.
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5.3.1 Exploration of Alternative Models
In this study, we limited our experimentation to models provided by OpenAI.
However, to obtain a broader perspective on performance and capabilities,
future research should explore and compare models from various providers
and architectures. Evaluating models from different sources will provide
insights into their relative strengths and weaknesses, and could lead to the
identification of models that are better suited to this specific task. Additionally,
considering the rapid advancement in the field of transformer-based models,
newer models may offer enhanced performance and efficiency, making it
worthwhile to continually revisit the choice of models as the technology
evolves.

5.3.2 Enhancements to Embedding-Based Approaches
Significant improvements can be made to the embedding-based approach to
further enhance performance. One of the most promising avenues is the fine-
tuning of an embedding model specifically for this task. By doing so, the
generated embeddings would be tailored to this particular application, likely
resulting in more accurate classifications. Moreover, fine-tuning could be
extended to integrate the classification model directly with the embedding
model. Research has shown that this approach can lead to more efficient
training and better overall results.

Additionally, the classification mechanism for the embeddings can be
refined. Experimenting with other classification techniques, such as Support
Vector Machine (SVM) and DNN, could yield improvements in accuracy and
robustness, providing a more versatile and effective solution.

5.3.3 Testing on Post-Cutoff Data
To further increase the reliability of the results, future work should include
testing on a dataset that is posterior to the knowledge cutoff date of the
models. This would ensure that the data used for evaluation is not present
in the training set, thereby providing a more accurate measure of the model’s
true generalization capability. Such a strategy would also help validate the
robustness of the model in real-world scenarios where data evolves over time.

In summary, while this research has laid the groundwork by demonstrating
the viability of the proposed approaches, there is significant scope for further
optimization and validation, which could lead to even more powerful and
reliable models.
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Chapter 6

Conclusions

The primary objective of this project was to assess the feasibility of identifying
vulnerabilities through the analysis of GitHub issues using advanced machine
learning models, particularly transformer-based models. The results of this
study have demonstrated that it is indeed possible to detect vulnerabilities
with relatively low computational cost, especially when employing embedding
models. This finding is particularly significant for real-world applications,
where resource efficiency is crucial.

The research shows that leveraging embedding models can lead to accurate
and timely identification of potential security issues, offering a valuable tool
for developers and security professionals. By automating the detection process
and incorporating advanced models like those based on embeddings and LLM,
organizations can enhance their ability to preemptively identify vulnerabilities
before they are disclosed publicly. This capability is vital in reducing the
window of opportunity for attackers to exploit these vulnerabilities, thereby
enhancing overall system security.

Moreover, the hybrid approach proposed in this work, which combines the
strengths of both embedding models and LLM, has shown that it is possible
to balance classification accuracy with detailed vulnerability descriptions.
This integrated method not only improves the reliability of the classification
process but also provides richer contextual information, which is essential for
understanding the nature of the vulnerabilities detected.

Despite these promising results, the study also highlights several areas for
future work, including the exploration of alternative models, the fine-tuning
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of embeddings specifically for this task, and the application of different
classification techniques. Additionally, validating the models on data that is
posterior to their knowledge cutoff is crucial for ensuring their effectiveness
in dynamic, real-world environments.

In conclusion, this project has successfully demonstrated the potential of using
advanced machine learning models to detect vulnerabilities through GitHub
issues. The findings suggest that with further refinement and optimization,
these models can be powerful tools in the ongoing effort to secure software
systems against emerging threats.
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