
Degree Project in Information and Communication Technology

Second cycle, 30 credits

Investigating the Effectiveness of
Stealthy Hijacks against Public
Route Collectors
Is AS-Path Prepending Enough to Hide from Public Route
Collectors?

KUNYU WANG

Stockholm, Sweden, 2023

Investigating the Effectiveness of
Stealthy Hijacks against Public Route
Collectors

Is AS-Path Prepending Enough to Hide from Public
Route Collectors?

KUNYU WANG

Master’s Programme, Communication Systems, 120 credits
Date: February 24, 2023

Supervisor: Alexandros Milolidakis
Examiner: Marco Chiesa

School of Electrical Engineering and Computer Science
Swedish title: Undersökning av effektiviteten hos smygande kapningar mot offentliga
ruttinsamlare
Swedish subtitle: Är AS-Path Prepending tillräckligt för att dölja från offentliga
ruttinsamlare?

© 2023 Kunyu Wang

| i

Abstract

BGP hijacking is a threat to network organizations because traditional BGP
protocols were not designed with security in mind. Currently, research to
combat hijacking is being done by detecting hijacking in real time from Public
Route Collectors. However, by using AS-Path Prepending, a well-known
traffic engineering technique, hijackers could adjust the influence scope of
hijacks to potentially avoid Public Route Collectors. This thesis investigates
fist, whether AS-Path Prepending is sufficient to hide from Public Route
Collector, and second whether the hijacker can predict its hijack’s stealthiness
by simply comparing the AS path length with the victim. Last, we investigate
the non-hijacker-controlled parameters, which are the geographical locations
and victim prepending times if the victim also enable AS-Path Prepending
for traffic engineering in our study. Our results show that on one hand, AS-
Path Prepending benefits stealthy hijacks to route collectors. While on the
other hand, it is not sufficient to completely hide from route collectors only
using it. By simply comparing the AS paths length, the hijacker’s prediction is
constructive but not practical. And non-hijacker-controlled parameters indeed
can significantly affect the stealthiness of hijacking.

Keywords

BGP, BGP Hijack, Stealthy IP prefix hijacking, AS-Path Prepending, BGP
monitoring

ii |

Sammanfattning | iii

Sammanfattning

BGP-kapning är ett hot mot nätverksorganisationer eftersom traditionella
BGP-protokoll inte har utformats med säkerheten i åtanke. För närvarande
bedrivs forskning för att bekämpa kapning genom att upptäcka kapning i
realtid från offentliga ruttinsamlare. Genom att använda AS-Path Prepending,
en välkänd trafikteknik, kan kapare dock justera kapningarnas inflytande för att
eventuellt undvika offentliga ruttinsamlare. I den här avhandlingen undersöks
för det första om AS-Path Prepending är tillräckligt för att dölja sig för Public
Route Collector och för det andra om kaparen kan förutsäga hur smygande
kapningen är genom att helt enkelt jämföra AS Path-längden med offrets.
Slutligen undersöker vi de parametrar som inte kontrolleras av kaparen, dvs.
geografiska platser och offrets prependingtider om offret också aktiverar AS-
Path Prepending för trafikteknik i vår studie. Våra resultat visar att AS-Path
Prepending å ena sidan gynnar smygande kapningar av ruttinsamlare. Å andra
sidan räcker det inte för att helt och hållet dölja sig för ruttinsamlare om
man bara använder det. Genom att helt enkelt jämföra AS-vägarnas längd
är kaparens förutsägelser konstruktiva men inte praktiska. Parametrar som
inte kontrolleras av kaparen kan faktiskt påverka kapningens smygande på ett
betydande sätt.

Nyckelord

BGP, BGP Hijack, Stealthy IP prefix hijacking, AS-Path Prepending, BGP-
övervakning

iv | Sammanfattning

Acknowledgments | v

Acknowledgments

I would like to express my gratitude to my examiner Marco Chiesa for
the opportunity to work on this interesting project. Also I would thank
my supervisor Alexandros Milolidakis for his patient guidance and valuable
comments on my thesis.

I would also like to thank my opponent Yulian Luo for her written review,
and my friends and family for their support.

Additional thanks to PEERING for their experiment approval, and thanks
to the researchers and developers who care about Internet security and are
passionate about open source.

Stockholm, February 2023
Kunyu Wang

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Background . 2
1.2 Problem . 3
1.3 Purpose . 3
1.4 Goals . 4
1.5 Research Methodology . 5
1.6 Delimitations . 5
1.7 Structure of the thesis . 5

2 Background 7
2.1 BGP Route Delivery Process 7
2.2 BGP Hijacking Classification 9

2.2.1 Affected Prefix . 10
2.2.2 Announced AS-path 10
2.2.3 Data plane . 11
2.2.4 Methods against BGP Hijacking 11

2.3 PRC and Monitors . 12
2.4 AS-Path Prepending . 13

2.4.1 ASPP in Traffic Engineering 14
2.4.2 ASPP in Hijacking 15

2.5 PEERING and BGPStream 16
2.5.1 PEERING Testbed 17
2.5.2 BGPStream . 18

2.6 Related Work . 18

3 Methods 21
3.1 Research Process . 21

3.1.1 Experiment Structure Design 21
3.1.2 Data Collection Design 24

viii | Contents

3.2 Experiment Unit design . 24
3.3 Data Collection . 27
3.4 Planned Data Analysis . 29

3.4.1 The Effect of Type Number and the Accuracy of
Inference - Between Experiment Units 30

3.4.2 The Impact of Meta Parameters - Between Experi-
ment Sets . 32

3.4.3 Structure of the Topology and the Presence of Key
Nodes - In Experiment Unit 32

4 Technical Details 35
4.1 Experiment Design . 35

4.1.1 Peering Testbed . 35
4.1.2 Experiment Set and Experiment Units Scripts 36

4.2 Data Collection . 38
4.2.1 BGPStream . 38
4.2.2 MongoDB . 40

4.3 Data Analysis . 41
4.3.1 Analysis of ASPP in Hijacking 41
4.3.2 Analysis of the Accuracy of Hijacking Inference . . . 42

4.3.2.1 Complete Stealthy Indicator 42
4.3.2.2 TPR and FPR 44

4.3.3 Analysis of Meta Parameters 45

5 Results and Analysis 47
5.1 Data Collected and Statistical Information Analysis 47
5.2 The Impact of ASPP in Hijacking 50
5.3 Prediction of Hijack Stealthiness by a Simple Algorithm . . . 55
5.4 The Impact of Meta Parameters in Hijacking 64
5.5 Structure of the Topology and the Presence of Key Nodes . . . 67
5.6 Reliability Analysis . 69
5.7 Validity Analysis . 69

6 Conclusions and Future Work 71
6.1 Conclusions . 71
6.2 Limitations . 72
6.3 Future work . 72
6.4 Sustainability and Ethics . 72
6.5 Reflections . 73

Contents | ix

References 75

x | Contents

List of Figures | xi

List of Figures

2.1 Example of BGP Route Delivery Process 8
2.2 Example of a BGP hijack where the nodes V, A, B, C, Z, D,

and H represent different ASes. 10
2.3 PRC collects BGP information from peering VPs and output

two formats of data . 13
2.4 A simple ASPP schematic 14
2.5 A simple BGP topology tree 16
2.6 A simple BGP topology tree with simple type-1 hijacking . . . 16
2.7 A simple BGP topology tree with hijacking using ASPP 17

3.1 Process of one experiment set. One set contains five
experiment units. 22

3.2 General structure of one experiment set: four hijacking
experiment units from type 1 - 4 and one base experiment unit 25

3.3 Internal process of the hijacking experiment(left) unit and base
experiment unit (right). 27

3.4 A example of how to use experiment unit and set to analyze
ASPP and meta parameters 27

3.5 Parsing data from BGPStream and saving them into database. . 29
3.6 A simple algorithm to judge a hijack’s stealthiness. 31

4.1 Experiment set structure in code level 38
4.2 BGPStream framework structure 39
4.3 A graph to show the sets of monitors in PRC 43
4.4 A table to show a monitor’s proximity in different situation . . 44
4.5 An example of analyze points in ROC graph 46

5.1 Each record is stored as a document in MongoDB 48
5.2 All documents form a collection in MongoDB 48
5.3 Record density of experiment set (amsterdam01, wisc01, 0) . . 49

xii | List of Figures

5.4 AS path length distribution of experiment set (amsterdam01,
wisc01, 0) . 50

5.5 Number of monitors in experiment set (wisc01, grnet01, 3) . . 51
5.6 Percent of monitors in experiment sets (wisc01, grnet01, 3)

and (amsterdam01, wisc01, 0) 53
5.7 Number of monitors in experiment set (amsterdam01, wisc01,

0) . 54
5.8 Number of monitors in experiment set (amsterdam01, wisc01,

3). 56
5.9 Number of monitors in experiment set (wisc01, amsterdam01,

3). 57
5.10 Complete stealthy indicator of experiment set (amsterdam01,

wisc01, 3). Each bar illustrates the minimum hijacking Type
that would allow each monitor to remain stealthy for the
corresponding Public Route Collector (PRC) 58

5.11 Complete stealthy indicator of experiment set (wisc01,
amsterdam01, 3). Each bar illustrates the minimum hijacking
Type that would allow each monitor to remain stealthy for the
corresponding PRC . 59

5.12 Complete stealthy indicator of experiment set (wisc01,
grnet01, 3). Each bar illustrates the minimum hijacking Type
that would allow each monitor to remain stealthy for the
corresponding PRC . 60

5.13 Simple algothrim accuracy in ROC space 63
5.14 Hijack visibility results for the AS-path prepending done by

the victim in the experiment sets (amsterdam01, wisc01, 2),
(amsterdam01, wisc01, 1), and (amsterdam01, wisc01, 0).
The numbers 2, 1, and 0 represent the number of ASes
prepended. 66

5.15 AS path topology net graph for experiment unit with hijacking
type 2 in (wisc01, grnet01, 3) 68

5.16 AS path topology tree graph for experiment unit with hijacking
type 2 in (wisc01, grnet01, 3) 68

List of Tables | xiii

List of Tables

3.1 Meta parameters between experiment sets 32

5.1 Some interesting PRC statistics for (wisc01, grnet01, 3),
(amsterdam01, wisc01, 3) and (wisc01, amsterdam01, 3) . . . 61

xiv | List of Tables

Listings | xv

Listings

4.1 One example of JSON format configuration 36
4.2 Some methods in the Python class of experiment unit 37
4.3 A snippet of invoking PyBGPStream API 39
4.4 Two typical funtions of combine PyMongo and PyBGPStream 40

xvi | Listings

List of acronyms and abbreviations | xvii

List of acronyms and abbreviations

AS Autonomous System
ASN Autonomous System Number
ASPP AS-Path Prepending

BGP Border Gateway Protocol
BMP BGP Monitoring Protocol

CDN Content Delivery Network

FPR False Positive Rate

IP Internet Protocol
ITE Inbound Traffic Engineering

MED Multi Exit Discriminator

P2P Peer-to-Peer
PKI Public Key Infrastructure
PRC Public Route Collector

RIB Routing Information Base
ROC Receiver Operating Characteristic
ROV Route Origin Validation
RPKI Resource Public Key Infrastructure

TPR True Positive Rate

VP Vantage Point

xviii | List of acronyms and abbreviations

Introduction | 1

Chapter 1

Introduction

On the Internet, there are currently thousands of Autonomous Systems (ASs)
that are interconnected and constantly exchange traffic. Between the various
ASs, the Border Gateway Protocol (BGP) is used to advertise IP prefixes and
so construct inter-domain routes. Each AS is able to announce its own prefixes
to its neighbors, as well as routes to the prefixes of other connected networks.
However, BGP is not a protocol designed with security in mind; thus, any
AS may accidentally or deliberately advertise bogus routes (i.e., non-existent
routes) for any prefix. Such attacks, known as BGP hijacking, pose a potential
threat to network security. Other ASes in the Internet would mistake the
hijacker as the victim, or follow a bogus path to the victim, so the traffic from
affected ASs is redirected towards the hijacker.

Currently, to defend against BGP hijacking, networks usually use reactive
mechanisms [1]. Those mechanisms consist of two steps: detection and
mitigation. Mitigation is to use some methods to reduce the impact and
damage caused by hijacking. Before taking steps on mitigation, detection is
essential which mainly relies on some third-party distributed data sources.
These data sources usually rely on route collectors, which collects the
information distributed by multiple monitors on other networks. This
infrastructure of Public Route Collector (PRC) is a collection of multiple
distributed route collectors that allow public access to the Internet routes for
prefixes they collect. Hijacked victims can retrieve the data of their own
prefixes from these collectors, detect the presence of a hijack, and produce
alert notifications. Therefore, public collectors can, in practice, notice changes
in BGP routes and detect hijacking if the monitors record the hijacked routes.
However, hijackers focusing on counter-reconnaissance may carefully design
the attack to avoid being caught by the public collectors. After all, these data

2 | Introduction

sources are also visible to the hijackers. By observing the routes collected by
public collectors for their own legitimate prefixes, hijackers may be able to
evaluate the visibility of their hijacks.

In this thesis, we investigate how effective route collectors can be in
observing BGP hijacks from the routes that their monitors’ report. Meanwhile,
we also illustrate the viability of developing stealthy hijacks that can conceal
themselves from PRC. The Peering Testbed [2] will be used in this thesis to
ethically announce hijacks so that results from the real Internet are obtained.

1.1 Background

The BGP protocol itself lacks authentication and security mechanisms. BGP
hijacking occurs when any AS announces bogus routes for any IP prefix that
it does not own, therefore stealing the traffic destined for that prefix. As a
result of such a BGP hijacking, attackers can sniff the traffic from hijacked
destinations, use it to phish, or even simply drop the traffic.

Numerous hijackings have occurred in the real world. For example, on
1st April 2020, AS12389 in Russia announced an unusual Content Delivery
Network (CDN) prefix that belongs to Facebook. And as a result, more than
8,000 CDN prefixes have been affected and traffic has been directed to Russia.
Although the incident lasted for 5 minutes, many CDN including Facebook,
Google, Amazon, Line, and Cloudflare were affected [3].

The fundamental cause of such problems is because the original BGP
protocol does not guarantee Route Origin Validation (ROV). Various research
approaches and techniques have been proposed to combat hijackers. Some
proactive designs has been implemented to ensure the trustworthiness of
BGP updates by means of cryptography [4]. Furthermore, some enhanced
protocols such as Resource Public Key Infrastructure (RPKI)[5] have also
been proposed to improve security. However, not all ASs have adopted these
recommendations, possibly due to the complexity of these procedures [6]. As
of September 2022, less than 40% of the prefixes are RPKI protected.[7]

Therefore, the main method of defending BGP is still reactive detection
and mitigation. Hijackers may employ interdomain traffic engineering
techniques, such as AS path prepending or AS path poisoning, to limit
the scope of hijacking breadth among ASs, and therefore potentially escape
collector surveillance. In such circumstances, it is important to investigate the
real-world effectiveness of collector monitoring and to investigate whether it
is or not possible for hijackers to build such stealthy hijacks.

Introduction | 3

1.2 Problem

Third-party PRCs play a significant role in the detection of potential BGP
hijackings. Collectors record information from monitors and disclose it to
some public platform at specific intervals for research. However, according to
the work of Enrico et al.[8] public route collectors have a relatively constrained
and skewed vision of the Internet topology in BGP. The top-down collection
structure is constrained by the relationships between peers, and the number
of routes collected is limited across the complex real Internet. As a result,
the messages collected are more indicative of the network topology as seen by
some of the biggest ISPs in the Internet, and it is hard to display the substantial
number of Peer-to-Peer (P2P) links at the bottom. Geographical factors also
play a role in this limitation. For example, P2P links in Africa are totally
invisible for PRC as of 2012 [8]. All these facts mean that the route collectors
face more complex and variable situations in a real network than it does in a
simulation, which can lead to different results.

To make matters worse in hijacking, hijackers can adjust the affected area to
some extent by modifying the hijacks they announce. Since hijackers also have
access to these PRCs, they can observe their relative position to the victim.
Therefore, the visibility of hijacking can be inferred to some extent, which
helps hijackers to better implement stealthy attacks.

In particular, as described above and in Section 2.3, PRC are commonly
not able to collect all BGP messages. PRCs are accessible to hijackers.
And hijackers could adjust the routes that route collectors observe using
traffic engineering methods, such as AS-Path Prepending (ASPP), AS-path
poisoning, etc. These three facts could make it possible to design stealthy
hijacks in the real Internet that escape from PRCs.

1.3 Purpose

The purpose of this thesis is to evaluate the ability of hijackers to improve the
stealthiness of hijacking by some methods in order to hide from the PRC. The
stealthiness described here implies visibility to PRC, which can be quantified
as the number of monitors observed hijacking collected by PRC.

Since we built a standard experiment for the BGP hijacking test on a real
network, our research is likely to be of interest to researchers interested in
the visibility of BGP hijacks. We restricted the visibility of hijacking to the
collector’s field of view, so this study may also be useful for researchers and

4 | Introduction

operators of PRC. In addition, we tested the effect of different geographical
locations of the hijacker and the victim on the collector’s field of view, which
may shed light on the placement of new monitors or route collectors.

1.4 Goals

The basic goal of the project is to evaluate the capability of hijackers to avoid
PRC. Past work by Milolidakis A. [9] used Traffic Engineering methods, such
as AS-path prepending and AS-path poisoning, to evaluate the capability of
hijackers to avoid PRC in simulations. In this thesis, we focus in the real world
to understand how capable hijackers would be to avoid PRC using AS-path
prepending methods. To answer this goal, we divide it into the following three
subgoals.

1. Verify how helpful ASPP is in generating stealthy attacks. As mentioned
in Section 2.4.2, the hijacker can increase the AS-Path in its own
hijacking message through ASPP, theoretically causing the hijacking
to become less-preferred to some other ASes. The longer the AS-
path length, the stealthier the hijack should be. The first goal is to
demonstrate that the hijacker is capable of narrowing the observable
range of the hijack via ASPP.

2. Verify the accuracy of a simple algorithm used to infer the stealthiness
of the hijack prior to its announcement. As mentioned in Section 2.5.2,
the PRC data are publicly available. This means that the hijackers are
able to observe both their own and the victims’ BGP prefix propagation
on the Internet. Theoretically, the hijacker could be able to infer whether
monitors would report or not a planned hijack.

3. Verify the impact of non hijack-controlled parameters on the stealthiness
of hijacking. There are many parameters beyond the hijackers’ control
that may influence the impact and stealthiness of an attack, such as
the proximity of the hijacker to the victim and to the monitors, the
geographical location of the hijacker and the victim, and whether or not
the victim prepends its prefixes.

As described in Section 2.4.1, there are many ASes that themselves use
ASPP as a means of traffic engineering. The victim’s use of ASPP to
extend the length of its own AS path is beyond the hijacker’s control.
Additionally, the geographical location of the hijacker and the victim

Introduction | 5

affects the overall visibility of the hijack. Theoretically, hijackers closer
to the monitor are more likely to be exposed. Therefore, in this thesis, we
also consider as an important sub-goal to study the stealthiness impact
of these “meta-parameters" that are beyond the control of the hijacker.

1.5 Research Methodology

The research done in this thesis is accomplished using a mix of qualitative
and quantitative research methods. Qualitative methods are mainly used for
sub-goal 1 and sub-goal 2. Through qualitative comparisons, we can mainly
identify a trend and determine whether the relevant parameters have an impact
on the final result. Quantitative methods are mainly used for sub-goal 1 and
sub-goal 2. The specific number of monitors in the results allows us to judge
the performance of each experiment set and the accuracy and the feasibility of
the designed algorithm.

1.6 Delimitations

We study the role of PRC in BGP hijacking in real networks, and the possibility
of improving stealthiness. Therefore, our study is limited to the field of view
of collectors. Furthermore, we focus on the range of hijacking reported by
PRC instead of hijacking mitigation strategies performed by the victims.

To verify the stealthiness of the hijacking, our hijackings are limited to
exact-prefix hijacking, which is described in Section 6.2. Meanwhile, we only
care about the hijack in the control plane instead of the intent of the hijacker
in the data plane. The purpose of the hijacker, i.e., traffic black holes, man-in-
the-middle attacks, etc, are outside the scope of our evaluation.

BGP Monitoring Protocol (BMP) [10] is a recent enhancement to the
BGP protocol that enables an AS to pass its entire Adj-RIB-In table to route
collectors, rather than just the best route in the Loc-RIB table. This new
protocol improves the ability to look for BGP hijacking, but we consider that
the monitors’ messages collected do not support BMP in the design.

1.7 Structure of the thesis

Chapter 2 presents relevant background information on BGP hijacking and
ASPP. Chapter 3 presents the methodology and method used to solve the
problem. Chapter 4 presents some technical details and data analysis in the

6 | Introduction

experiments. Chapter 5 shows our results and gives our interpretation through
discussion. Chapter 6 summarizes the whole text, gives our conclusions, and
suggests some directions for future work.

Background | 7

Chapter 2

Background

This chapter provides a overview of some basic background about BGP
selection , BGP hijacking and AS-path prepending. In addition, this chapter
presents some relevant platform we use in this project. Section 2.1 describes
BGP path selection and why the hijackers could hide from monitors through
this process. Section 2.2 describes the BGP hijacking classification in detail
and which type of hijacking should be if the hijacker wants to build up a
stealthy hijack. Section 2.3 describes what is PRC and how the monitors
work with PRC. Section 2.4 describes what is ASPP and how to use ASPP
in traffic engineering and hijacking. Section 2.5 describes the platform we use
to experiment and fetch data. Section 2.6 describes some related work against
BGP hijacking.

2.1 BGP Route Delivery Process

BGP is one of the primary decentralized autonomous routing protocols of the
Internet. It utilizes a rule set based on paths and each AS’s network policies
to establish routes, hence enabling inter-AS connectivity. According to the
current BGP protocol [11], a BGP speaker stores routing information received
from inbound neighbors into the Adj-RIB-In table, and then selects the ideal
route to be stored in the Loc-RIB table following the local BGP speaker’s
decision process. Through the Adj-RIB-Out table, the routing information
in the Loc-RIB can then be transmitted to outbound peers. The main process
can be shown in Figure 2.1.

BGP requires each AS to inform its peers of only of the optimal (best) path
it knows of each prefix. This allows hijackers to remain hidden.

There are several rules for BGP selection and are prioritized in a specific

8 | Background

Figure 2.1: Example of BGP Route Delivery Process

order. Path selection for BGP tables generally occurs in the following order.
[11]

1. highest local-preference value

2. shortest AS-path length

3. lowest origin value

4. lowest MED value

5. routes from EBGP over IBGP

6. best exit from AS

7. routes from peers with lowest Router ID

The hijacker can simply modifies its message’s attribute to make it more
enticing in this selection. Among these attributes, changing the second and
fourth rules are the most direct and efficient methods, since they can be
controlled by BGP speakers. While the MED value is a non-transitive optional
attribute, we focus primarily on hijacking via the AS path.

Each BGP message must carry the AS-path attribute, and by actively
changing it, hijackers could win the BGP selection against victim in some
ASes. However, to hide from the collectors, what hijackers need is to lose the
selection for some specific ASes, at least, before propagating to the monitors.
The hijacker can change the length and content of AS path to lose this selection.
For example, by prolonging the length of the advertised AS-path so that
it is eliminated by the BGP selection law prior to being transmitted to the
collector. An ideal scenario is that the propagation range of the hijacked route

Background | 9

can be controlled and predicted by adjusting the length of the AS path. In
actual networks, however, the path selection laws within each AS are trade
secrets and typically do not fully comply with the selection provisions of the
protocol. According to the Gao-Rexford model [12], an AS’s BGP strategy
may prioritize commercial profitability over network connectivity. Thus,
many ASs in the network will prioritize routing information from customers
who pay him over information from P2P neighbors, which could be more
useful but free. And this option is merely a conceivable desire, not a strict rule.
As a result of these nontechnical factors, the effect of AS-path prepending on
real networks can differ from its simulation performance, making it hard for a
hijacker to forecast and organize a flawless hijack.

Consequently, and as explained in Section 1.6, we don’t consider the BMP
in our design. Since requiring all ASs in the actual network to pass the Adj-
RIB-In table is impractical and goes against the original intent of the BGP
protocol design. The hijacker has no way of knowing which ASes on the
network have BMP turned on. Furthermore, if the hijacker considers that all
monitors in PRC enable BMP, the difficulty can be shifted from deceiving
collectors to deceiving their monitors, which has little effect on the hijacker’s
structure. Therefore, we do not consider the collector’s peer to have enabled
BMP in the current experiments.

2.2 BGP Hijacking Classification

BGP hijacking occurs when a hijacker redirects network traffic in the wrong
direction by manipulating BGP messages. Typically, a hijacker accomplishes
this by falsely claiming ownership of a hijacked Internet Protocol (IP) prefix
which it does not own or route to. Because the widely used BGP protocol lacks
a mechanism to verify the legitimacy of messages, BGP hijacking for network
control is possible and difficult to manually prevent.

According to Sermpezis et al., BGP hijacking can be modeled into three
dimensions which are the affected prefix, the AS path, and the data plane levels
[1]. To better understand, let’s consider such a scheme shown in Figure 2.2.
We assume that victim possesses prefix 10.0.0.0/23 with Autonomous System
Number (ASN) V, while hijacker legally administers 10.1.0.0/23with ASN H.
We use {AS-path - Prefix} to represent the information in a BGP message that
is valuable to us. The current valid path to AS V from the standpoint of AS
Z should be {C,B,A, V − 10.0.0.0/23}, where C, B, A, and V represent the
ASs on the path for Z to reach V.

10 | Background

Figure 2.2: Example of a BGP hijack where the nodes V, A, B, C, Z, D, and
H represent different ASes.

2.2.1 Affected Prefix

Based on the announced prefix of the hijacker, hijacking can be categorized as
either exact-prefix hijacking or sub-prefix hijacking.

Exact-prefix hijacking: In this case, the hijacker announces the exact
same prefix as announced by the victim. This means that the hijacker’s
announcement has to compete with the victim’s prefix for AS-path length in
the network. Therefore, the Internet will be separated between regions affected
either by the hijacking or that remain unaffected continuing to forward traffic
to the victim’s prefix.

Sub-prefix hijacking: Hijackers can declare a smaller range of IP
addresses than the victim to achieve hijacking. For example, hijacker H can
announce a message like {H − 10.0.0.1/24} while the victim announces
{V − 10.0.0.0/23}. In such cases, the entire Internet will prefer the hijacker’s
choice, since BGP favors a more specific prefix.

2.2.2 Announced AS-path

Hijacking can also be classified by the way the hijacker manipulates the AS
path that it announces to the rest of the Internet. N below denotes the number
of hops required to reach the victim through this phony path.

Type-N:N > 0 signifies that a hijacker trys to insert its own AS into a path
to the victim. This means that the hijacker is prepending to be one participant

Background | 11

in a fake path and then malforms the AS-path. {ASh,ASd,ASa,ASv −
10.0.0.0/23} is an example of type-3 hijacking, whereas {ASh,ASv −
10.0.0.0/23} is an example of type-1 hijacking. In both false routes, the
hijacker is simulated to reach the victim.

Type-0: N = 0 signifies that the hijacker has posed as the prefix owner,
which means that the hijacker exists in the last portion of the AS path. As an
illustration, ASh− 10.0.0.0/23 is a type-0 hijacking.

Since our experiment seeks to conceal hijacking as much as possible using
the AS-path prepending and is constrained by platform limits, we explore the
case where N is between 1 and 4.

2.2.3 Data plane

BGP hijacking can also be classify according to the way the hijacker diverts
the hijacked traffic. The primary goal of traffic diversion is to steer traffic to the
hijacker. After acquiring the traffic, a hijacker may operate as an intermediary
to eavesdrop, corrupt existing connections, or establish new connections. It is
also feasible to simply drop traffic and create a black hole for traffic.

2.2.4 Methods against BGP Hijacking

As we described in Section 1.1, some researches trying to block hijacking
proactively like RPKI [5] and some cryptographic methods [4] are facing with
issue to fully deploy into all the ASes on the Internet.

Therefore, the traditional procedure is to first identify and then mitigate
hijacking. Various BGP hijacking analysis algorithms and protocol
enhancement have been presented. Some examine the Routing Information
Base (RIB) history they have collected to recognize fraudulent routing paths
[13]; while others enhance the BGP protocol to ensure that BGP messages
are trustworthy [14]. However, these solutions which require large-scale
deployment to be effective, are also challenging apply in practice as it requires
the global coordination of multiple ASes to effectively stop hijacks from
propagating.

Another idea is to detect hijacking using path-related algorithms [15] or by
analyzing large amounts of data using machine learning [16]. As not all ASs
can deploy a large number of probes throughout their networks, data sources
represent a significant obstacle for these systems. A third-party data collector
becomes an indispensable service.

Also, there are some other issues, such as false positives in the actual

12 | Background

Internet. Due to network engineering and other factors, the routing
information of each AS is non-uniform, and the traffic design within each
AS is considered confidential internal information. For these reasons, our
investigations are limited to a situation in which a AS collects public routing
information from a third-party collector to identify whether its own prefixes
have been hijacked.

2.3 PRC and Monitors

In this section we introduce the PRC and the structure of PRC to collect BGP
information from monitors.

Whether for monitoring, troubleshooting, or academic research, it is
necessary to collect BGP routes in the network. An effective way to do this
is through BGP looking glasses, where users can access the current state of a
router’s RIB through the looking glass interface provided by the AS. However,
this approach from the command line is not suitable for large systematic
collection and is more suitable as an interactive way of obtaining some targeted
data. Another way is through some protocols designed for monitoring, such
as BMP [10], which allows the user to obtain the Adj-RIB-In Table inside
the router and thus monitor its peering sessions. Unfortunately, as far as we
currently know, there are no major projects involving BMP that are open to
the public.

PRC is another method of collecting BGP routing data. There are many
mature technical implementations and public projects involving PRC. A route
collector is a host in the network that has a process such as Quagga [17]
running to collect routing information. By emulating a virtual router, the
PRC establishes peering sessions with real routers on the network. A PRC
may establish connections with multiple peers, which are generally called
Vantage Points (VPs) [18]. As shown in Figure 2.3, the PRC implements the
collection of BGP routes by aggregating the Adj-RIB-Out tables of the many
VPs collected.

Unfortunately, PRCs are commonly unable to collect all the routing
information of the VPs they are peering with. Some VPs are able to pass all
their routing information in Loc-RIB to the PRC by establishing a customer-
provider relationship with the PRC. However, some VPs do not provide transit
service, limiting the PRC to access only some of the information on their
Loc-RIB. As establishing a connection with the PRC and providing routing
information is usually voluntary, PRC do not enforce VPs to provide their
transit routes neither they actively analyze how this information changes over

Background | 13

Figure 2.3: PRC collects BGP information from peering VPs and output two
formats of data

time – although researchers could document and infer this information from
the collected routes.

PRC will periodically provide two data collection formats. Every few
hours, a currently retained federated snapshot of Adj-RIB-Out tables fetched
from all VPs is dumped, called an RIB dump. Every few minutes, a federated
union of update messages is fetched from all VPs since the last dump, called
an update dump. The RIB dump provides a coarse-time granularity analysis
tool, while the Updates dump makes it possible to analyze routing changes in
a short period of time.

In our project, the focus on whether VPs can report or not a hijacking to
PRC, so we call these VPs as monitors in the thesis. Also, we use the Update
dumps rather than the RIB dumps, which is limited by the time span of our
experiments. A more specific discussion of the choice between the two will
be given in Section 3.3.

2.4 AS-Path Prepending

Inbound Traffic Engineering (ITE) is a technique for optimizing traffic and
maximizing benefits by modifying stated routing information. Numerous ASs
that receive more traffic than they send frequently employ ITE to affect the link
selection of their incoming traffic. Among the numerous ITE techniques, such
as BGP communities and Multi Exit Discriminator (MED) selection, ASPP
is one of the most straightforward to use. Before announcing or passing the
BGP message to its neighbor, AS can manually increase its own ASN for n
times to regulate traffic. This n is prepend-size (n ∈ N+). ASPP as a means
of traffic engineering can control the distribution of traffic, yet the hijacker can

14 | Background

also use it to control the scope of the hijack, thus increasing the stealth of the
hijack. Below we first discuss how ASPP simply works as traffic engineering
to control the distribution of traffic, and then describe how it helps to hide for
hijackers.

2.4.1 ASPP in Traffic Engineering

Figure 2.4 shows a basic schematic of ASPP. In the illustration, it is assumed
that each AS prioritizes the shortest AS path over other commercial factors.
In this case, AS E has two neighbors, AS B and AS E. The ASs in the blue
region will spread its traffic along the blue path, while the ASs in the orange
goes along the orange path. Since the orange path is shorter than the blue path,
if no ASPP is deployed, the traffic from AS G will propagate down the orange
path to AS A. However, if AS A deploys ASPP as depicted in the image of G,
the blue path is logically shorter and G will be divided into the blue zone.

Figure 2.4: A simple ASPP schematic

Since each AS can have multiple different peers, ASPP can be divided into
three categories using ASPP strategies per AS. According to Pedro et al. [19],
for a prefix-origin pair, we can divide ASPP into three categories: no-prepend,
uniform and diverse. If there is no prepending happening, we say it is no-
prepend. If this AS deploys the same policy for all peers it has, we consider
it as uniform. And if for different peers the prepending is different, we define
it as diverse. In Figure 2.4, AS A doesn’t prepend for AS B, and it prepends
twice for AS E. Therefore, it is a diverse strategy in this case.

ASPP is common phenomenon in the Internet. The research by Pedro et
al. [19] found that nearly 30% of AS and a quarter of prefixes have ASPP

Background | 15

enabled. Among these ASes, the use of policies has been stable and more
prepending occurs during COVID-19. Furthermore, contrary to intuition, a
number of ASes use the uniform strategy, although it is not able to make their
neighbors different.

The function of ASPP is to be able to adjust the area responsible for each
link to achieve an ideal traffic distribution. Although the effectiveness of ASPP
is difficult to be evaluated and depends largely on the location of AS, in the
majority circumstances ASPP can move traffic more efficiently. This has made
this simple technology widespread. Notice that ASPP is a method to adjusting
the weight of traffic on different paths. This method can be used to balance
links in the absence of a hijacker. However, this may present a chance for the
hijacker to take advantage of it if ASPP is present. Apparently, ASPP regulates
traffic distribution by making some of its routes "weaker" in the competition,
which in turn could make it easier for the hijacker’s fake routes to win.

2.4.2 ASPP in Hijacking

ASPP is a means of the weakening routes, which causes a proportion of routes
to not be preferred by BGP’s best path selection. However, hijackers can also
use it to weaken their hijacking if they want to increase the stealthiness of
the hijacking. We can represent this process more visually by constructing the
topology as a tree. Figure 2.5 shows a slightly more complex topology. Victim
AS V adopts diverse strategy for ASPP. Fake nodes can be used to represent
the prepend size for different neighbors. In this case, we can clearly see that
AS E has chosen the yellow route over the closer blue route because the fake
nodes have extended its path.

However, when the hijacker is involved by announcing the attack, the
topology, in fact, takes the shape of a spindle. Figure 2.6 shows if hijacker
AS H announces a simple type-1 hijacking for all its neighbors. We can see
that in this case, AS F and AS G are hijacked by the hijacker, while AS E
and AS H face paths that have the same length as the hijacker and the victim.
However, this is only the most basic type-1 hijacking. If the hijacker decides
to use ASPP in Figure 2.7, the scope of the hijacker’s hijack becomes smaller.
Due to the longer path announced with the peer AS G, AS H will choose the
shorter route to the victim. If AS H is a monitor (i.e., a VP) of PRC, ASPP
will then help the hijacker increase its stealthiness.

16 | Background

Figure 2.5: A simple BGP topology tree

Figure 2.6: A simple BGP topology tree with simple type-1 hijacking

2.5 PEERING and BGPStream

Throughout the experiment, we need an experimental platform that could
provide simulated hijackers and victims in a real network. Furthermore,

Background | 17

Figure 2.7: A simple BGP topology tree with hijacking using ASPP

we need data platforms that can access PRC information. In this project,
the PEERING testbed [2] is used to simulate victims and hijackers, and the
BGPStream [20] is used to obtain BGP messages in the real network.

2.5.1 PEERING Testbed

PEERING is a community platform built on top of vBGP [21]. vBGP is
a framework for virtualizing the control-plane and the data-plane. On this
platform, the operation is equivalent to operating AS directly. It allows
several parallel experiments, which applies to our need to simulate both the
victim and the hijacker at the same time. In addition, it offers more than
one ASN and prefixes for free combinations, which provides convenience for
experimentation.

It officially supports some ITE and hijacking operations. Operators can
declare different messages to different peers simply via the command line
and can also experiment with ITE using ASPP. In addition, some BGP
hijacking methods can be enabled such as BGP poisoning. The platform
officially supports customizing the BGP messages sent by an AS by loading
configuration files. PEERING also provides different locations as BGP
upstream, making it easy to evaluate the impact of the hijacker and the victim

18 | Background

at different locations on the network.

2.5.2 BGPStream

BGPStream is a software framework to analyze historical and real-time BGP
messages [20]. The focus of BGPStream is to help operators build complex
network monitoring applications, such as monitoring network outages and
BGP hijacking, by providing a unified API to handle large amounts of
historical and real-time data [18]. It takes information from data sources and
provides a unified tool for users to access information from these data sources.
There are two popular projects which provide data for BGPStream which are
RouteViews [22] and RIPE RIS [23]. These data sources provide over 900
monitors, and the number is still increasing.

Just as we introduced in Section 2.3, there are two data formats provided:
RIB dump and Updates dump. RIB dumps provides a general summary of
the changes in the BGP routing table over a long period of time, and Updates
dump gives a complete illustration of all the changes in the BGP tables over a
short period of time. Therefore, Updates dumps is well suited to analyze the
visibility of hijacking at a small granularity.

2.6 Related Work

This section introduces some related work including research in BGP
security, hijacking countermeasures, and more. The first is to enhance
the security aspects of BGP. There has been a long history of work to
improve BGP security, and there are many achievements and measures in
place. For example, adding sequence numbers to BGP messages [24], adding
authentication to BGP messages [25], and implementing encryption of BGP
messages between peers [26]. Stephen Kent et al. [4] built on these studies
by combining techniques such as Public Key Infrastructure (PKI) and IPsec to
construct an S-BGP architecture that addresses most of the vulnerabilities.

Second, continuous monitoring of BGP data is important to detect
hijacking. Some researchers wanted to gain continuous access to the router’s
BGP RIBs. BMP protocol [10] was thus born. With this protocol, users can
monitor or dump Adj-RIB-In from a peer for further analysis. Some software
implementations based on the BMP protocol have been put into use, such as
OpenBMP [27].

Finally, several studies focusing on the problem of hijacking were
presented. These studies focus on how to detect and mitigate hijacking.

Background | 19

Several algorithms applying anomaly detection [28] [29] were proposed to
identify spurious routes. Josh Karlin et al. [13] took a different approach,
proposing to delay the update of suspicious routes by constructing trusted
lists, reducing the likelihood of hijacking causing damage. Some hijacking
experiments in real networks have also been numerous. The effect of ASPP
in traffic engineering is studied in detail in [19] through the Peering Testbed
platform [2], which also presents the fact that ASPP has an impact on
hijacking. ARTEMIS [1] proposed by Pavlos Sermpezis et al. provides a set of
solutions to hijack discovery and mitigation. It should be noted that ARTEMIS
relies on data from public BGP monitoring infrastructure (e.g. RIPE[23] and
routeviews[22]) studied in this thesis.

20 | Background

Methods | 21

Chapter 3

Methods

The purpose of this chapter is to provide an overview of the research method
used in this thesis. Section 3.1 describes the research process, including how
we designed the experimental structure and data collection. Section 3.2 details
the construction of each experiment unit. Section 3.3 details the thought on
data collection. Section 3.4 presents shows how we intend to analyze the final
results of the experiment to achieve our project goals.

3.1 Research Process

The research process of this project is divided into two parts: the design
of the structure of the BGP hijacking experiment and the collection of BGP
information to get the result of hijacking.

Figure 3.1 illustrates the experimental process we have designed. We can
see the experiment structure where an experiment set contains five experiment
units, and each of the units is collected via BGPStream. We automated the
experimental and data collection process for each experiment set through
scripting. And this hierarchical structure of the experiments was designed
to help us analyze the data.

3.1.1 Experiment Structure Design

For the first part, we will outline how we implemented our three sub-goals
when designing the experimental BGP hijacking method.

The first sub-goal is to confirm that using ASPP in hijacking improves
stealthiness. The primary idea is to compare the changes in the number of
monitors that observe hijacks collected by route collectors by increasing the

22 | Methods

Figure 3.1: Process of one experiment set. One set contains five experiment
units.

hijacking type number. Theoretically, as the hijacking type number increases,
the number of monitors observing the hijacking should decrease. This would
mean that hijacker-initiated ASPP routes improve the stealthiness of the hijack.

To achieve this objective, we need to create a fundamental experimental
unit. Each experiment unit contains a particular hijacking type number
ranging from 1 to 4. After announcing those four types of experiment
units, the results can be analyzed by comparing the AS-paths that monitors
report. Experimentally, we name the process of announcing a BGP route
and withdrawing it as one experiment unit. For each experiment unit, we
configure the hijacking type number, i.e., the path length of the announced
route. For sub-goal 1, this involves the four experiment units discussed
above with hijacking type numbers ranging from 1 to 4. In Section 3.2
and Section 4.1, respectively, the configuration procedure and the particular
implementation of each experiment unit are described in greater detail.

The second sub-goal is to explore whether the hijacker could infer the
monitors that would observe the hijack using publicly available data reported
by route collectors. This requires the hijacker to announce a legal, victim-
independent prefix. When comparing this prefix with the victim’s information
reported by the PRC, the hijacker may be able to make a prediction.
Consequently, we must also design an experiment in which the hijacker
announces a prefix that is entirely unrelated to the victim. For this, another
type of experiment unit similar to sub-goal 1 is utilized to implement this
procedure. We achieved our objective by configuring a victim-independent,

Methods | 23

non-hijacked experiment unit. In this distinct unit, the hijacker does not initiate
a hijack, but rather announces a legitimate prefix-ASN pair. The hijacker
predicts the hijack’s visibility from this valid unit’s visibility if it had been
declared as a type N hijack based on an analysis of this unit’s results. This
is then compared to the results of the real hijacking experiment performed in
sub-goal 1, which was actually declared as a type N, and thus the feasibility of
the hijacker to predict the visibility of the hijack is determined.

The third sub-goal is to investigate the impact of non-hijacker controlled
parameters on the stealthiness of hijacking. In order to study this sub-goal,
we need to determine which parameters are non-hijacker controlled from
those parameters that fall within the scope of this project. Specifically, we
examine two non-hijacker controlled parameters: the geographical location
of the victim and the hijacker∗, and the impact of ASPP done by the
victim e.g., for traffic engineering reasons. Section 3.2 describes how we
designed our experiments and section 3.3 further explains why we choose
to investigate these two non-controlled parameters. From now on, these
non-hijacker controlled parameters will be referred to as meta parameters.
Clearly, the dimensions of the hijacking type number and meta parameters
are not the same. This is because, to study ASPP in hijacking, we need
to change the hijacking type number while leaving the meta-parameter
unchanged. However, if we want to study non-hijacker controlled parameters,
we need to change the meta-parameters while implementing the hijacking
type number within this set of meta parameters. Clearly, meta-parameters
are one dimension higher than hijacking type numbers, and a hierarchical
experimental structure should be designed to match these hierarchical research
parameters.

Therefore, to answer our three sets of goals. we define a set of experiment
units, consisting of five experiment units with the same meta parameters,
the hijacking type number 1 to 4, and the hijacker declaration of the
legitimate BGP information, as an experiment set. The data from each
set of experiments are analyzed to answer sub-goal 1 and sub-goal 2, while
multiple experiment sets are analyzed to answer sub-goal 3. A set of meta-
parameters can be used to create a set of experimental sets, and when we
need to study a meta-parameter, we can simply alter it and compare the two
experimental sets. For instance, if we want to study the effect the geographical
locations of the victim and the hijacker have to hijacking, we can construct two
experiment sets; one for a hijacker in location A and a victim in location B, and
∗ While with sufficient time hijackers could deploy routing devices closer to victims, we
assume hijacker locations are fixed in this thesis.

24 | Methods

another for a hijacker in location B and a victim in location A. We can analyze
then the effect of geographical location by comparing the outcomes of the
two experiment sets. Clearly, the construction of an experiment set enables
us to more clearly organize our data, focusing on the number of hijacking
types within an experiment set and between different experiment sets when
analyzing meta-parameters.

3.1.2 Data Collection Design

The second part of the research method is the collection of data via
BGPStream, first decribed in section 2.5.2. Actually, to answer the research
goals, we need to collect all the data from the experiments as part of the results.
Therefore, in each experiment unit, we record the announcement time and
the withdrawal time of the BGP messages during the announcement of the
hijacking experiment. Using these recorded timestamps, we use BGPStream
to collect all BGP messages recorded by route collectors for our prefixes within
the recorded time period. In this way, we obtain the BGP data required for each
of our experiments. After this, we create our own local database to collate the
information we have obtained from each experiment. For more details on this
step, see section 3.3.

3.2 Experiment Unit design

In this section, we discuss the design of the experiment unit. As mentioned
in Section 3.1, in an experiment set, we need two kinds of experiment units:
hijacking and non-hijacking ones. We need to make a hijacking announcement
to fetch the hijacking result for sub-goal 1, and also need to make a legitimate
announcement from the hijacker to infer the monitors which may observe
the attack for sub-goal 2. This requires the design of a different structure of
experimental units than sub-goal 1. As can be seen from the perspective of the
code in Section 4.1.1, the two types of experiment unit differ only in the value
set of parameters, using essentially the same framework. These two types of
experiment unit are designed for different goals, so we have divided them into
two types: the hijacking experiment unit and the base experiment unit. In
the hijacking experiment unit, we have the hijacker announcing a type N hijack
to learn the effect of ASPP. After this, in the base experiment unit, we have
the hijacker announcing its own legitimate BGP information to investigate the
visibility of the hijack. These five experimental units form an experiment set.

Methods | 25

Figure 3.2 specifically describes the composition of an experiment set from an
experimental perspective.

Figure 3.2: General structure of one experiment set: four hijacking experiment
units from type 1 - 4 and one base experiment unit

However, there are three challenges. First, it takes time for BGP messages
to propagate to other ASes on the Internet. This means that from the time
we announce and withdraw BGP prefixes, it takes sometime for those BGP
UPDATE messages to be delivered to route collectors. Second, because the
delivery of messages is not instantaneous, it is possible for a monitor to report
multiple paths during the time it receives the announcement and withdrawal.
This means that the monitor may be constantly optimizing the path based on
newly received messages. Third, we must consider that withdrawal delivery is
also not instantaneous; therefore, we need to wait sometime before announcing
the next experiment, otherwise it will collide with the previous one. The
first and third challenges can be solved by carefully designing the experiment
unit process, while the second challenge requires careful design of the data
collection process, which will be described in section 3.3.

Here, we describe our design for the internal processes of the two
experiment units and how this process deals with these challenges. First,
we discuss the hijacking experiment unit. In one experiment set, we only
change the type number among the hijacking experiment units. The platform
restricts our hijacking type number to types 1-4, that is, four types of
hijacking. In the hijacking experiment units, we first announce the victim.
The victim announces its prefix and ASN on the Internet, and then after 20
minutes, the hijacker announces the hijack on the Internet. After waiting
forty minutes to allow BGP to stabilize, we withdraw both the hijacker’s and
victim’s announcement simultaneously. This provides ample time for the
BGP messages to propagate before withdrawal to solve the first challenge.
Similarly, we waited another 40 minutes to allow the network to stabilize and
prevent any impact on the next experiment unit to solve the third challenge.
The entire time frame that we need for the data collection, starting with the

26 | Methods

victim declaration and ending with the withdrawal of both declarations, is
60 minutes. This is because BGPStream’s data sources provide data at 5
and 15 minute intervals, respectively, as described in Section 3.3, and we
want to fetch as few and synchronized packets as possible while keeping the
experiment time in a reasonable range. One experiment unit takes 1 hour and
40 minutes, and with five experiment units in an experiment set, we cannot
provide an unlimited amount of time for an experiment unit. As shown in the
left part of the Figure 3.3, the blue bar represents the time of the announcement
until the withdrawal of the victim, while the red bar represents the time of
the announcement until the withdrawal of the hijack. Although there may
still exist BGP messages on the Internet for the last 40 minutes (because
withdrawal takes time to propagate), we do not log them. This is because
for data collection, we care for the data between the victim’s announcement to
the withdrawal.

In the base experiment unit, things get easier for we do not need to care
about the sequence of victim and hijacker’s announcements. Since both
announce their own BGP prefixes, which are unrelated to each other, we simply
treat them the same way by announcing both for an hour then withdrawing
them waiting for 40 minutes for BGP to converge. As shown in the right part
of Figure 3.3, time of the victim and hijacker announcement and withdrawal
is equal in this unit.

In the following, we discuss how the impact of ASPP and meta-parameters
can be studied through the experiment unit and experiment set. As discussed,
there are two meta-parameters that we study in this project: victim prepending
time and geographic locations. victim prepending time is the amount of time
required to simulate the victim’s traffic engineering using ASPP. The number
of geographic locations refers to the relative positions of the victim and the
hijacker.

As shown in Figure 3.4, we have three sets of experiments, each with
hijacking units of type 1-4. In red in the figure, we illustrate our study
on the impact of ASPP on hijacking. This refers to an experiment set.
Each experimental set (three shown in the figure) focuses on different meta-
parameters. When we study victim prepending, we keep the geographic
locations constant, as shown in the green block in the figure. And, as shown
in the blue block, when we study geographical locations, we leave victim
prepending unchanged. This allows the better organization of the meta-
parameters.

Methods | 27

Figure 3.3: Internal process of the hijacking experiment(left) unit and base
experiment unit (right).

Figure 3.4: A example of how to use experiment unit and set to analyze ASPP
and meta parameters

3.3 Data Collection

We use the libraries provided by BGPStream, and on top we build our own
scripts and collect the data.

As Section 2.5.2 described, BGPStream fetches BGP data from two

28 | Methods

projects: Route Views and RIPE RIS. Both data sources have two data formats:
RIB dumps and update dumps. Route Views discloses RIB dumps every 2
hours, and RIPE RIS RIB discloses RIB dumps every 8 hours. RIB dumps
contain a complete routing table with prefixes and AS paths. Obviously, such
a long interval for RIB dumps is detrimental to our experiment unit. We cannot
make a unit last for 8 hours. In contrast, Updates dumps provide collected BGP
messages within shorter time period; therefore, they are more suitable for data
collection, and so we fetch data from those Updates dumps.

BGPStream provides the appropriate interface, which allows us to get all
the detected BGP Update dumps for the period given a prefix and a pair of
timestamps. And these data are collected by BGPStream from its two data
sources for the period. Due to fluctuations in the real network, we may see
messages from multiple timestamps from the same monitor. Sometimes, as is
often the case when BGP is unstable, one monitor may choose to report an AS
path and then choose another. So, there are some route stability issues here that
arise from our choice of tracking BGP updates instead of the actual RIB for
the sake of experimental time granularity. The first issue is when we fetch one
record, how we can ensure that it is the last stable BGP state to be maintained
across networks. The second issue is when we fetch another record which has
some same attribute as a previous one, how we can judge whether this new
record should replace or not the previous state, or consider it as a new one to
allow both to co-exist in an up-to-date state. Obviously, all these problems
arise because we chose to fetch Update dumps rather than RIB dumps for a
more reasonable experimental time, which led to the need to manually infer
the final network state based on the update records.

Since we need to parse records one by one and there is no guarantee that
the parsed data will be the last state of the network, we have to keep all the
records in our database. With this in mind, we have added a field called latest
to our database to mark whether or not a record is the most recent record.
Specifically, when two conflicting records appear in the database at the same
time, we make a judgment based on their timestamps - whether to give the
new record latest state and revoke the old one’s state, or just to leave the old
record latest unchanged. So, here is the only question that remains: How can
we judge whether two records are conflicting? More specifically, when a new
record is parsed, based on what criteria are all records that conflict with it
retrieved from the database?

Figure 3.5 briefly shows how we retrieve the BGP data and how we
build the database. As mentioned above, we need to establish a criterion for
determining whether two records are conflicting, i.e., whether the two records

Methods | 29

are updates of the same AS. If they are, we do an update, otherwise we do
an addition. So, we set a criterion in the script by converting the data we
get through the interface into the data structure we need, using the quintet
(project, collector, peerasn, peeraddress, router) as the criterion for each
entry. We consider this quintet to uniquely identify a BGP path reported by the
same monitor. Therefore, we consider all different records that match the same
quintet to be updates. Finally, we set the field latest as a Boolean value. In all
data with the same criterion, only the record with the latest timestamp can have
the latest field True. Some more technical details of database construction
can be found in Section 4.2.

Figure 3.5: Parsing data from BGPStream and saving them into database.

3.4 Planned Data Analysis

In this section, we discuss how we plan and analyze the collected data. It is
important to note that our experiment plan restrict us from conducting multiple
experiments simultaneously in parallel. Each experiment unit is conducted one
after the other, therefore a buffer time must be reserved between experiments

30 | Methods

for the previous experiment to completely withdraw from the Internet (i.e., the
40 minutes discussed before). So we make the following assumptions, which
are necessary for us to analyze the experimental data.

• We assume that within the duration of the same experiment set, the
“active” monitors collected by the PRC do not change in the network
or change so little that they have a negligible impact on the collected
data observations of the experiments.

• We assume that the variation in monitors collected among different
experiment sets in our experiment is small and has negligible impact
on the experiment analysis of data at the experiment set scale.

As described in Section 3.2, we control several experiment variables
through the experiment units and experiment sets, and organized the data from
different perspectives. Our approach for analyzing the experiment data will be
based on this. Our planned data analysis will be carried out from the following
perspectives: between experiment units within an experiment set, between
experiment sets, and the presentation of a single experiment unit. We will
then describe in detail the planned analysis process and its implications.

3.4.1 The Effect of Type Number and the Accuracy of
Inference - Between Experiment Units

When we analyzed the data between the experiment units of the same
experiment set, we kept the meta parameters unchanged except for the
hijacking type number. This is to verify the effect of hijacking type number
on the visibility of hijacking. Theoretically, the larger the type number is, the
fewer networks will prefer the hijacker in the Internet, and therefore, the more
covert the hijacking will be, i.e., fewer monitors will observe the hijacking. By
taking the collector as the horizontal coordinate and the number of monitors
observing the victim and hijacker as the vertical coordinate, we can make a
plot of the results for each hijacking experiment unit, and so one experiment
set can make four such plots (type 1-4). By comparing these plots, we can
verify that increasing the type number of the attack is beneficial for hiding the
hijacking, which in turn supports the idea that hijackers can improve hijacking
concealment by designing higher type number attacks.

Additionally, we performed a base experiment to simulate the process of a
hijacker announcing its own legitimate message and then evaluating the impact
of the hijack. We devised a simple algorithm that takes the BGP messages

Methods | 31

received by each monitor and calculates the number of ASes in the BGP path
between the two legitimate BGP messages. This number of ASes is called
the distance of this monitor from the hijacker and the victim (respectively).
We then subtract these two distances to decide whether the monitor is closer
to the hijacker or closer to the victim. Theoretically, any hijack with a greater
hijacker-monitor distance than a victim-monitor distance should be able to hide
from the monitor. Based on this simple algorithm, the hijacker can infer the
possible visibility of the hijacking based on its own and the victim’s legitimate
BGP messages.

Figure 3.6: A simple algorithm to judge a hijack’s stealthiness.

For example, in the process shown in Figure 3.6, the hijacker can infer
from the base experiment unit about which monitors in types 1-4 would not
observe the attack and what is the ideal minimum Type Number for complete
invisibility. Then, obtain from the hijacking experiment unit data on how
many monitors are indeed not observing the attack, what the accuracy of the
inference is, and what the probability of false negatives and false positives

32 | Methods

Table 3.1: Meta parameters between experiment sets

Prefix ASN Victim Prepending Number Locations

Modifiable ✓ ✓

is. These data allow for a simple assessment of the likelihood of the hijacker
predicting the possible stealthiness of the attack based on legitimate data.

3.4.2 The Impact of Meta Parameters - Between Experi-
ment Sets

We refer to parameters other than Type Number as meta-parameters, as these
are variables that are fixed in one of our experimental sets. Specifically, there
are the following kinds of meta-parameter during this experiment.

As Table Table 3.1 shows, we did not modify the Prefix and ASN of
the victim and hijacker in our experiments. We modified the Victim AS
prepending Number and the geographic locations of the hijacker and the
victim. As mentioned in the background, a significant proportion of ASes
use ASPP as part of traffic engineering, so the impact of different Victim
Prepending Numbers on hijacking concealment is also worth investigating.
Theoretically, the higher the Victim Prepending Number, the easier it is for
the hijacker to hijack the victim however the more likely for the hijacker would
be to be exposed as more monitors would observe the attack. Additionally,
information on the geographical location of the hijacker and victim is also
an important aspect to study. Although from the hijacker’s point of view, the
geographical location of both is not controllable. From the a researcher’s point
of view, a change in geographic location is worth studying as it could make a
considerable difference.

It is important to note that, from the perspective of experiment sets, we
still need to control other variables. For example, when looking at the Victim
Prepending Number, we want to control for the geographic location of both to
be constant, and vice versa.

3.4.3 Structure of the Topology and the Presence of Key
Nodes - In Experiment Unit

Finally, we focus on a single experiment unit. The single experiment unit has
all parameters fixed and is therefore not the focus of our study. Here we simply

Methods | 33

try to combine the AS-Path information from all networks into a tree and
network diagrams, as described in Section 2.4.2. We speculate that there may
be some so-called key nodes present. By key nodes, we mean that there are
multiple child nodes under a single node in the tree structure translated from
the topology diagram of the AS paths. These nodes appear in the AS-path of
many monitors. It is also possible that some nodes exist in both the hijack path
and the victim path; they play different roles in the paths of different monitors.
There are significant differences between the real network and the idealized
model. The hijacker may also be able to design some advanced algorithms
(e.g. using machine learning, etc.) based on this information. Such studies are
not in our focus, and some conjectures will be given in Section Section 6.3.

34 | Methods

Technical Details | 35

Chapter 4

Technical Details

In this chapter we will describe some technical details of our experiments.
Section 4.1 describes the API that the Peering Testbed platform provides
us with to release BGP messages into the network and how to organize
the experimental code structure. In this chapter, we briefly describe how
we modified the parameters in the BGP messages (such as hijacking type
number and locations) through the configuration file to simulate both hijackers
and victims. Additionally, we create automated scripts in each experiment
set to ensure that the experiment units are ordered and serial. Section 4.2
describes the process of building our database. In this section, we give a brief
introduction to the format of the data obtained through the BGPStream API,
and also create scripts to collate BGP information into a local database. The
selection of the database and the format in which the data is stored will be
described in detail in this chapter. Section 4.3 details how we analyze the
experiment data and propose solutions to some problems in the analysis.

4.1 Experiment Design

In this section we will briefly introduce the scripting interface provided
by Peering Testbed from a code level, and our design for automating each
experiment set.

4.1.1 Peering Testbed

Peering Testbed provides a client [30] for individual researchers. Through the
Python interface provided by this client, authorized users are able to publish
BGP messages for authorized prefixes and ASN.

36 | Technical Details

This client exists to use the command line method of passing the
parameters directly via the command line to send BGP messages. However,
the command line approach does not allow the use of ASPP to hide the
hijacking while typing the parameters, and it is also difficult to integrate
into an automated script. So, we use another use which is to configuration
files to set the BGP messages. For the client, each BGP message (including
announcement and withdrawal) is a configuration file. The configuration file
is a JSON file, and the following Listing 4.1 is an example of this JSON
configuration.

Listing 4.1: One example of JSON format configuration
1 {
2 " 184 . 164 . 236 . 0 / 24 " : {
3 " announce " : [
4 {
5 " muxes " : [
6 " g r n e t 01 "
7] ,
8 " o r i g i n " : 61576 ,
9 " p repend " : [61575 , 61575 , 61575] ,

10 }
11]
12 }
13 }

This profile is an example of type-3 hijacking for the prefix 184.164.236.0/24.
The victim’s ASN is 61576 and the hijacker’s ASN is 61575. The hijacker is
sending the messages to the network via grnet. Obviously, we can control
the parameters of each message by changing this configuration file. We can
change the ASN and hijacking type number of the hijacker, as well as the mux
issued by the hijacker, which identifies the network provider or organization
with which Peering Testbed peers. By changing this identifier, we can change
the geographical location of the hijacker and the victim.

4.1.2 Experiment Set and Experiment Units Scripts

An experiment set contains hijacking experiment units of type 1-4 and one
base experiment unit. Since the functions of the experiment unit interface to
Peering Testbed API and the configuration file we provide, there is no need to
distinguish between the two types of experiment unit in experiment unit script.
We have unified the two types of experiment units into one single Python class
at code level. In this class, specific methods are exposed for the upper layers
to call (e.g. announce and withdraw). The code snippet Listing 4.2 shows
some methods used to control the experiment unit process, with some of the
methods collapsed.

Technical Details | 37

Listing 4.2: Some methods in the Python class of experiment unit� �
1 """
2 Experiment class to control the experiment unit process
3 """
4 class Experiment () :
5 def __init__ (self , ∗exp_confs) :
6 self . announce_exp_confs_vic = [utils . load_json (conf) for conf
7 in exp_confs if ’announce’ in conf and ’victim’ in conf]
8 self . announce_exp_confs_hij = [utils . load_json (conf) for conf
9 in exp_confs if ’announce’ in conf and ’hijacker’ in conf]

10 self . announce_exp_confs_bas = [utils . load_json (conf) for conf
11 in exp_confs if ’announce’ in conf and ’base’ in conf]
12 . . .
13 self . muxes = set ()
14 self . controller = utils . BGPController ()
15 self . deploy_timestamp = dict ()
16 self . _init ()
17
18 def _init (self) :
19 . . .
20
21 def _open_client (self) :
22 . . .
23
24 def _deploy_one_conf (self , conf , cooling_time) :
25 self . _open_client ()
26 self . controller . deploy (conf)
27 self . deploy_timestamp . setdefault (str (conf) , int (time . time ()))
28 time . sleep (cooling_time)
29
30 def deploy_victim_announcement (self , cooling_time=COOLING_TIME) :
31 . . .
32
33 def deploy_hijacker_announcement (self , cooling_time=COOLING_TIME) :
34 . . .
35
36 def deploy_base_announcement (self , cooling_time=COOLING_TIME) :
37 . . .
38
39 def deploy_base_withdrawal (self , cooling_time=COOLING_TIME) :
40 . . .� �

The type of configuration file (hijacking or base unit) in this code is
determined by the name of the configuration file. So when writing one script
to call this class (i.e. the experiment set), we do not need to care about its
internal details. We only need to name the configuration file correctly and
then call the instance method with the corresponding name according to the
order of the experiments. Correspondingly, since the configuration files for our
multiple experiment sets exist as templates and only specific parameters need
to be modified between different sets, we also wrote a script to generate the
corresponding configuration files by type some parameters we care. The code
for the entire experiment set can thus be structured as shown in Figure 4.1.

In fact, the only difference between our different experiment sets is the

38 | Technical Details

Figure 4.1: Experiment set structure in code level

location of the configuration files, so it is only necessary to generate the
configuration files for many groups of experiment sets in advance to automate
the sequential execution of the different experiment sets.

4.2 Data Collection

In this section we will briefly introduce the API and data formats provided by
BGPStream from a code level, as well as the details of our own database build.

4.2.1 BGPStream

As Figure 4.2 shows, BGPStream has been designed as a multi-layer structure.
[31] At the core of this is libBGPStream, a library written in C that can be
installed through the package management tools of several Linux distributions.
This library provides the ability to collect data from its data providers and a
unified API to fetch these data. In addition, BGPStream provides a command-
line tool, BGPReader, and a Python library, PyBGPStream. We use the API
provided by PyBGPStream in our scripts to fetch data.

By giving a time range, target prefix and ASN, PyBGPStream can return

Technical Details | 39

Figure 4.2: BGPStream framework structure

the parsed records in its given format. Listing 4.3 is a snippet of our script to
invoke the PyBGPStream API.

Listing 4.3: A snippet of invoking PyBGPStream API� �
1 """
2 Invoking PyBGPStream API with our database
3 """
4 stream_type = StreamType . UPDATE
5 prefix = "184.164.236.0/24"
6
7 for index , time_pair in enumerate (time_pair_list) :
8 start , end = time_pair
9 _ , mycol = collect_db (stream_type=stream_type , prefix=prefix ,

10 name=f’184.164.236.0/24_{index+1+start_index}-{num}’)
11
12 stream = pybgpstream . BGPStream (
13 from_time=start , until_time=end ,
14 record_type=stream_type . value ,
15 filter="prefix exact " + prefix
16)
17
18 main (mycol=mycol , stream_type=stream_type , stream=stream)� �

In this snippet, PyBGPStream returns a stream, and the stream can
be traversed by a number of records. PyBGPStream calls these records

40 | Technical Details

elems [32], and each elem as an instance has its own properties. Function
parse_to_dict in code snippet Listing 4.4 shows what properties we used in
elems.

In fact, the PyBGPStream API is so simple that all we need to do is provide
the correct parameters, and we can iterate through the records that match the
conditions without caring about the details of the internal implementation.

4.2.2 MongoDB

We used MongoDB [33] when building our own database. MongoDB is a
document database, and we chose MongoDB because we wanted to use a flat
way of storing data. MongoDB also supports saving fields as arrays, which
is a great formal advantage for saving AS paths. In addition, each database
collection can be imported and exported in json format, which is very attractive
for our data migration. Taking many judgements into account, we finally chose
MongoDB as our database.

In fact, interfacing with BGPStream and MongoDB is not difficult, as
there is a Python library named PyMongo [34] that allows one to connect to
the database. This code snippet Listing 4.4 shows how we combine it with
BGPStream.

Listing 4.4: Two typical funtions of combine PyMongo and PyBGPStream� �
1 """
2 Parse the data fetched into our database using our format
3 """
4 def parse_to_dict (elem : pybgpstream . pybgpstream . BGPElem) :
5 returned_dict = {
6 "project" : elem . project ,
7 "collector" : elem . collector ,
8 "time" : int (elem . time) ,
9 "peer_asn" : elem . peer_asn ,

10 "second_asn" : None ,
11 "ori_asn" : None ,
12 "peer_address" : elem . peer_address ,
13 "router" : elem . router ,
14 "as_path" : None ,
15 "latest" : True
16 }
17
18 if elem . _maybe_field ("as-path") is None :
19 returned_dict ["as_path"] = []
20 else :
21 returned_dict ["as_path"] = elem . _maybe_field ("as-path") . split (" ")
22 if len (returned_dict ["as_path"]) > 2 :
23 returned_dict ["second_asn"] = returned_dict ["as_path"] [1]
24 returned_dict ["ori_asn"] = returned_dict ["as_path"] [−1]
25
26 return returned_dict
27

Technical Details | 41

28 def parse_update_into_db (db_collection : pymongo . collection . Collection ,
29 stream : pybgpstream . BGPStream) :
30 for elem in stream :
31 parsed_dict = parse_to_dict (elem)
32 query_dict_gt = {"project" : parsed_dict ["project"] , "collector" :
33 parsed_dict ["collector"] , "peer_asn" : parsed_dict ["peer_asn"] ,
34 "ori_asn" : parsed_dict ["ori_asn"] ,
35 "peer_address" : parsed_dict ["peer_address"] ,
36 "router" : parsed_dict ["router"] ,
37 "time" : { "$gt" : parsed_dict ["time"] } , "latest" : True}
38 if db_collection . count_documents (query_dict_gt) > 0 :
39 parsed_dict ["latest"] = False
40 db_collection . insert_one (parsed_dict)
41 else :
42 query_dict_lte = {"project" : parsed_dict ["project"] ,
43 "collector" : parsed_dict ["collector"] ,
44 "peer_asn" : parsed_dict ["peer_asn"] ,
45 "ori_asn" : parsed_dict ["ori_asn"] , "peer_address" :
46 parsed_dict ["peer_address"] ,
47 "router" : parsed_dict ["router"] ,
48 "time" : { "$lte" : parsed_dict ["time"] } ,
49 "latest" : True}
50 db_collection . update_many (query_dict_lte ,
51 {"$set" : {"latest" : False}})
52 db_collection . insert_one (parsed_dict)� �

The function parse_to_dict extracts the attributes we need from the data
format provided by PyBGPStream, and parse_update_into_db implements
the function to update the records according to the criteria we described in
Section 3.3. Note that we implement the judgement and latest field updates
through MongoDB’s query and aggregation statement at the time of each
record fetched. The performance of the database statement to check and update
is clearly superior to simply saving all the data into one JSON file and then
traversing it, which is another important reason for our choice of using the
database.

4.3 Data Analysis

In this section, we will describe some details in how we achieve our data
analyses. We will follow the sequence of how to implement our three sub-
goals. This is also the order in which we will express the results of our
experiments in Chapter 5.

4.3.1 Analysis of ASPP in Hijacking

The analysis of ASPP is straightforward. We just need to be given a set of
meta parameters and then compare the results of the hijacking type number

42 | Technical Details

growing from 1 to 4. We can then determine whether ASPP is conducive to
improving the stealthiness of hijacking.

Our quantitative metric for measuring stealthiness of a hijack is the number
of monitors per PRC collected that reported the hijack. We will give a stacked
bar chart plotted in absolute numbers of monitors. Also, we will also make a
stacked bar chart with the percentage of monitors reporting hijacking. Since
the total number of monitors reported by different PRCs can vary considerably,
a comparison of the above absolute and percentage plots will allow better
conclusions to be drawn. We plan to look at all the data we have collected
to confirm that it is a general phenomenon that ASPP is helpful to hijack
stealthiness. We also plan to show several sets of bar plot under typical meta-
parameters in the thesis.

4.3.2 Analysis of the Accuracy of Hijacking Inference

As Section 3.4.1 described, we have made a simple algorithm to infer
stealthiness of a hijack given the hijacking type number. To achieve this,
we need to gather the paths reported by PRC, both for the hijacker’s and the
victim’s independent prefix announcement.

4.3.2.1 Complete Stealthy Indicator

To compute the potential stealthiness of a hijack, we plot two kinds of result
graphs based on a quantitative indicator which is called as complete stealthy
indicator.

As described in Section 3.4.1, given a potential prepending number for the
hijacker, we could infer whether the hijack will be stealthy or not to a specific
monitor. By analyzing all the monitors of a PRC, a minimum prepending
number could be inferred that has the potential to make the hijack completely
invisible to this PRC. We define this minimum prepending number as the
complete stealthy indicator for this PRC. However, before we talk about this
indicator, we need to first talk about a special situation when we try to infer
the hijacking stealthiness.

In Section 3.4.1, we define that for a single monitor, the proximity to infer
whether the hijacking will be stealthy or not is the difference in the distance
in AS path between victim and hijacker. However, since in base experiment
units, the hijacker announces its own legitimate BGP prefix which independent
of the prefix announced by the victim, we cannot guarantee that the monitors
that observe both are exactly the same. In fact, for more than six hundred
monitors reporting their prefixes to these PRCs, it is possible for the hijacker

Technical Details | 43

to be observed without the victim being observed in a monitor’s report, and
vice versa. And these monitors observed only one side may vary with the
geographical location of victim and hijacker.

Figure 4.3: A graph to show the sets of monitors in PRC

As shown in Figure 4.3, all monitors under a PRC can be divided into
two sets: monitors reporting the victim and monitors reporting the hijacker.
However, the two sets are not identical as there may exist monitors in one set
that do not exist in the other. In this figure, the blue set represents monitors
reporting the victim and the red set represents monitors reporting the hijacker.
As shown, some monitors report the victim without hijacker (blue part), and
vice versa (red part).

In the algorithm presented in Section 3.4.1, for each monitor we have two
distances: Fist, the distance of the monitor to the hijacker (j variable), and
second the distance of the monitor to the victim (i variable). To calculate
the proximity used to compute the stealthiness of the hijack, we need both
distances (tuple (i, j)). For those monitors that do not report the hijacker, the
tuple becomes (i, None). Meanwhile, for those monitors that do not report the
victim the tuple becomes (None, j). When we want to calculate the proximity
with None, we will represent None as +∞ as +∞ represents an unreachable
distance for the proximity formula is i− j.

Figure 4.4 shows the possible calculation outcomes of the proximity
formula. Column labels represent the hijacker distance observed by each
monitor. Row labels represent the victim distance. The red +∞ at (None, j)

indicates a monitor that is not reporting the victim. As such monitors may
always report the hijacker no matter the hijack Type, we say that we cannot
design a stealthy hijack against this monitor (for the purposes of this work).
This is a rational argument as the hijacker cannot simple hide from a monitor

44 | Technical Details

Figure 4.4: A table to show a monitor’s proximity in different situation

that only reports the hijacker without reporting the victim.∗
Unfortunately, this infinity happens sometimes and will contaminate all

inferred results in a PRC, since no Type hijack exists that is bigger than infinity.
Although these monitors’ appearance of an infinity would signal that we would
not be able to design a completely stealthy hijack for this PRC via ASPP, we
present a graph of all PRC’s complete stealthy indicator after removing these
monitors in Section 5.3. We will also show a graph before the removal. The
difference in the length of the prepending number required by the different
PRCs can be clearly analyzed in these two graphs.

4.3.2.2 TPR and FPR

For a given prepending number, the hijacker would infer whether this potential
hijack will be stealthy or not for a monitor. We define a monitor as dangerous
if the monitor observes the hijack. The hijacker’s goal (second sub-goal of
this thesis) is to infer whether a monitor is dangerous. Thus, the algorithm
which computes the dangerous monitors is actually a classifier for dangerous
monitors. A traditional tool to analyze the true positive rate and false alarm
rate is the Receiver Operating Characteristic (ROC) graph [35]. The ROC
graph has been used in a wide range of areas, such as diagnostic systems [36].

For a binary classification problem, the outcomes have two labels which
are positive (p) and negative (n). Given an instance’s ground truth and the
∗ This is the case for this thesis’ methods. For clarity, we note there may exist other methods
(not used in this thesis) that may allow a hijacker to hide from such monitors).

Technical Details | 45

classifier’s output of this instance, if both the instance and output are positive,
then this is a true positive. While, if the output of classifier is negative, then
this is defined as a false negative. In our case, the instance is a monitor and
the label is whether the monitor is dangerous.

By counting the true positive and false positive instances, we obtain the
two components of the ROC curve: the True Positive Rate (TPR) and the False
Positive Rate (FPR). [35]

TPR =
TruePositives

TotalPositives
, FPR =

FalsePositives

TotalNegatives
(4.1)

As shown in Figure 4.5, once we get a group of TPR and FPR, we can
find a point in the ROC graph. If the output of a classifier lies at the top left
corner, we can conclude that the classifier is very effective. For example, in
Figure 4.5 classifier A is better than classifier B. Classifier C is very close to
the diagonal, which indicates that the classifier results are closer to the results
of random assignment. An interesting fact is that while classifier D has worse
results than a random classifier, it is not bad. In fact, classifiers with points at
the bottom right corner are also effective, as they tend to correctly make the
opposite judgment of what they were designed.

Researchers with experience in machine learning will be more familiar
with the ROC curve. However, our study analisys of results stops at the point
in the ROC space. For this project, we did not train our algorithm and we
did not have a redundant dataset. In fact, each PRC is different, and each
monitor under a PRC is also different. Our (FPR, TPR) results are only used
to show the performance of this simple algorithm in a coarse-grained way,
as well as to try to visualize the differences in performance under different
prepending number and meta-parameters. The design of a more advanced
algorithms could be the purpose of future work.

4.3.3 Analysis of Meta Parameters

For the meta parameters, we have used a similar visualization approach as
the analysis in Hijacking Type Number. When analyzing the impact of the
victim’s prepending number, we did so with the help of a stacked histogram
of the percentage of hijacked monitors. And when analyzing the impact of
geographic locations of the hijacker and the victim, we observed the changes
in visibility by changing only one position of the two, and also by swapping
the two positions (i.e., the hijacker and the victim).

46 | Technical Details

Figure 4.5: An example of analyze points in ROC graph

Results and Analysis | 47

Chapter 5

Results and Analysis

In this chapter, we present the results and discuss them. First, We will
present the data we have collected and then describe the major results of the
experiments according to the order of the sub-goals defined in a previous
section. To answer the sub-goals, Chapter 3 has described the set of
experimental data and parameters that we research. Those are: (hijacker
location, victim location, victim prepending number). In fact, these three
set of variables describe the meta-parameters of an experiment set, i.e., the
geographical location of the hijacker, the geographical location of the victim,
and the number ASNs prepended when the victim uses ASPP for traffic
engineering. In the figures that follow, we use the abbreviation rv.xxx to refer
to routeviews.xxx when displaying the PRC names for aesthetics reasons.

5.1 Data Collected and Statistical Information
Analysis

Here we show the data we have collected and some statistics. We use
MongoDB to build the database with each record fetched stored as a document,
as shown in Figure 5.1 and Figure 5.2.

Before proceeding with our main analysis, we briefly analyze the database
in a statistical perspective unrelated to a specific monitor. There are two
interesting set of features. The first is the density of the crawled data. We
looked at all data with the latest field set as true, analyzed the distribution of
their timestamps in the database, and analyzed them according to the density of
their occurrence shown in Figure 5.3. This graph is generated by the database,
and its X-axis represents the whole time of one experiment unit. The green

48 | Results and Analysis

Figure 5.1: Each record is stored as a document in MongoDB

Figure 5.2: All documents form a collection in MongoDB

vertical line represents the frequency of recorded occurrences. The records
here are the final data we included in our analysis whose latest field is True.
And the more pronounced the green line is at a given point in time, the more
records are reported at that point in time. An interesting result was that in
an experiment unit where most monitors could observe hijacking, there was a
high-density spike in the amount of data observed at one third of the total time,
which is when we announce the hijack. In most of the experiment units where
little hijacking was observed, this peak was absent or insignificant. A typical
experiment set is (amsterdam01, wisc01, 0). In this experiment set, as the
hijacking type number increases, the number of monitors in which hijacking

Results and Analysis | 49

is observed changes from a majority to a smaller minority. We also illustrate
this example in terms of the number of observers in Section 5.2. And where
the temporal plots of the four experiment units are done, we can clearly see that
as the hijacking type number increases, the wave at the third of the total time
(hijacker announcement time) fades. Meanwhile the wave at the beginning of
the experiment (victim announcement time) gradually deepens as shown in
Figure 5.3. This is in line with our logic.

Figure 5.3: Record density of experiment set (amsterdam01, wisc01, 0)

The second interesting feature is the results AS path length. We
perform a macroscopic analysis from the resulting AS path length. Instead
of distinguishing whether a record was observed to be hijacked, we just
performed a statistical analysis of the AS path length for all valid records where
the latest field was True. Here we still choose (amsterdam01, wisc01, 0) as
a typical analysis to show the result. As can be seen in fig. 5.4, the AS path
length of majority of records increases as the hijacking type number increases.
In Figure 5.4, from the statistical point of view of AS path length alone,
the AS path length of most records concentrates towards 7 as the hijacking
type number increases. This is in line with our expectations. Because as the
hijacking type number decreases, more monitors will be attracted to hijackers
with shorter paths, leading to a fraction of AS path lengths. In theory, each
monitor tends to choose the shorter AS path between the hijacker and the
victim. Monitors who choose the hijacker do so mainly because the hijacker’s
path is shorter for them. The increase of hijacking type number will cause AS
path lengths in the records of such monitors to increase. On the other hand,

50 | Results and Analysis

Figure 5.4: AS path length distribution of experiment set (amsterdam01,
wisc01, 0)

this inflation is limited since large hijacking type numbers could also causes
some monitors to choose the victim, thus at some point reaching an upper limit
of inflation.

5.2 The Impact of ASPP in Hijacking

Our first sub-goal is to verify how helpful ASPP would be for the hijacker for
generating stealthy attacks. In sum, from our experimental results, it appears
that prepending the AS path is helpful for achieving stealthier hijacks. The
degree to which ASPP helps such attacks may vary for different hijackers and
victims. However, as the number of hijacking types increases, the stealthiness
of hijacking also commonly increases. Here, we show plots of the results for
two experimental sets where the results are intuitive.

In the first experiment set, we announce the victim’s prefix through grnet01
and then the hijacker’s prefix through wisc01. The experiments are identified

Results and Analysis | 51

as (wisc01, grnet01, 3), with Y-axis showing the number of monitors per
route collector (X-axis) that either observe or do not observe the hijack. The
results are shown in Figure 5.5, where blue bars of each stacked bar shows the
monitors that do not observe the hijack, while red bars show the number of
monitors that observe the hijack. The hijacker type number increases from 1
to 4, from the top to the bottom of the four subplots.

Figure 5.5: Number of monitors in experiment set (wisc01, grnet01, 3)

52 | Results and Analysis

As it can be clearly observed from the four subplots, for each PRC as the
number of hijacking types increases the size of the top blue bars increases
and the size of bottom red bars decreases. This means that the proportion of
hijacked monitors observed under each PRC is decreasing with the increasing
hijacking type number.

In addition, Figure 5.6(a) shows a percentage stacked bar chart. This graph
was created by transforming Figure 5.5 into percentages. To make the graph
more intuitive, we have plotted the results of the four hijacker type numbers
into one graph. And to reduce the length of the image, we have hidden some
PRCs’ result whose monitor number is trivial, i.e., less than 10. In this graph,
each PRC has four bars, and the top blue parts of each bar are the percentage
of monitors with no hijackers observed, while the bottom red parts are the
percentage of monitors with hijacking observed. The lighter red part at the
bottom of each of the four bars from left to right represents the increasing
number of hijacking types. Our use of lighter colors means that as the hijacking
type number increases, the hijacking becomes less competitive with the victim
and therefore less visible. The results are in line with our expectations, with
a decreasing percentage of hijacked monitors observed for higher hijack type
numbers at each PRC.

In another set of experiments, we change the locations of the hijacker and
the victim and announce the victim’s prefix at Wisconsin (wisc01) and the
hijacker’s prefix at Amsterdam (amsterdam01, with the experiment identified
as (amsterdam01, wisc01, 0). Similar to the previous Hijacker-Victim location,
two graphs are plotted shown in Figure 5.7 and Figure 5.6(b) (respectively).

An interesting point is that in Figure 5.5 and Figure 5.7 which show the
number of monitors per route collector, the total number of monitors under
some PRCs is not the same. This is an indication that the geographical
locations of the victim and the hijacker matters. We discuss more about the
geographic factor and how it affects stealthy hijacks in Section 5.4.

Results and Analysis | 53

(a) (b)

Figure 5.6: Percent of monitors in experiment sets (wisc01, grnet01, 3) and
(amsterdam01, wisc01, 0)

54 | Results and Analysis

Figure 5.7: Number of monitors in experiment set (amsterdam01, wisc01, 0)

Results and Analysis | 55

5.3 Prediction of Hijack Stealthiness by a
Simple Algorithm

With the base experiment unit described in Section 5.2, we obtained the paths
of the victim’s prefix and the hijacker’s prefix in each monitor. In Section 3.4.1
and Section 4.3.2 we presented our plan to use a simple algorithm to evaluate
the hijacker’s ability to infer the stealthiness of a possible hijack from the AS
paths disclosed from route collectors , i.e., to determine whether a hijack would
be observed by a monitor if it were announced. Here, we show the two plot
results planned from Section 4.3.2: (i) The complete stealthy indicator, and
(ii) the ROC space.

First, we focus on the complete stealthy indicator. As described in
Section 4.3.2.1, we should fist discuss the effect of infinity. As a reminder,
we defined the complete stealthy indicator for each PRC as the minimum
number of hijacking types that would allow each monitor to remain stealthy
after removing the infinity results from the algorithm. Hence, we make a plot
of the results of the complete stealthy indicator after removing infinity for each
PRC for every group of our experiments. Furthermore, we also produce plots
without the removal of infinity.

Out of our experiments, we have chosen three data sets with the identifiers
(amsterdam01, wisc01, 3), (wisc01, amsterdam01, 3) and (wisc01, grnet01,
3). Here these three sets of plots represent different experimental sets in
which the hijacking is in majority, the hijacking is in minority, and hijacking
is from majority to minority as the hijacking type number increases from 1 to
4, respectively. We say the hijacking is in majority (minority) if the majority
of the monitors of report the hijacker (the victim).

The (amsterdam01, wisc01, 3) experiment, where the victim is in
Wisconsin and the hijacker is in Amsterdam, represents an experiment set
where the hijacking is always in the majority, with the number of stacked bars
shown in Figure 5.8 and the result of the complete stealthy indicator shown
in Figure 5.10. The reverse experiment, (wisc01, amsterdam01, 3), where
the hijacker is in Wisconsin and the victim is in Amsterdam, represents an
experiment set where the hijacking is always in the minority, with the number
of stacked bars shown in Figure 5.9 and the result of the complete stealthy
indicator are shown in Figure 5.11. The (wisc01, grnet01, 3) experiment,
where the victim is situated this time in the Greek Research and Technology
Network (grnet), represents an experiment with a shift from majority to
minority hijacking, with the number stacked bars shown in Figure 5.5, and

56 | Results and Analysis

Figure 5.8: Number of monitors in experiment set (amsterdam01, wisc01, 3).

Results and Analysis | 57

Figure 5.9: Number of monitors in experiment set (wisc01, amsterdam01, 3).

58 | Results and Analysis

Figure 5.10: Complete stealthy indicator of experiment set (amsterdam01,
wisc01, 3). Each bar illustrates the minimum hijacking Type that would allow
each monitor to remain stealthy for the corresponding PRC

the result of the complete stealthy indicator shown in Figure 5.12. These three
plots of the complete stealthy indicator results have some out-of-range positive
and negative value bars in the Y-axis (presented as the maximum Y-axis value
11.5 and the minimum Y-axis value −1.5) as some monitors were computed
with an +∞ and a −∞ stealthy indicator value (respectively). An interesting
result can be seen from the data of therv.sydney PRC in Figure 5.10, where
the result before removing the infinity is +∞, while the result after removing
the infinity becomes −∞. This is actually caused due to the fact that the data
of rv.sydney without the removal of infinity are all +∞. When the infinity is
removed, the monitors of rv.sydney are all excluded and therefore the visibility
is set to the default minimum value −∞.

Observing these figures, we note a very interesting finding. For the
complete stealthy indicator plot with the +∞ removed, we see that the
maximum stealthy indicator value for both (wisc01, amsterdam01, 3) and

Results and Analysis | 59

Figure 5.11: Complete stealthy indicator of experiment set (wisc01,
amsterdam01, 3). Each bar illustrates the minimum hijacking Type that would
allow each monitor to remain stealthy for the corresponding PRC

(wisc01, grnet01, 3) (Figures 5.11 and 5.12 respectively) are the same, i.e.,
a value of 6. Meanwhile, the maximum value for (amsterdam01, wisc01, 3)
shown in Figure 5.10 is 10. These results correspond to the previous ones
shown in Section 5.2. For Type-4 hijacks, we see that most monitors don’t
report the hijack in the (wisc01, amsterdam01, 3) and in the (wisc01, grnet01,
3) experiments (Figures 5.5 and 5.9 respectively). But for Type-4 hijacks in
the (amsterdam01, wisc01, 3) experiment (Figure 5.8), most monitors observe
the hijack. Based on this, we believe that the complete stealthy indicator is
somewhat of a guide for hijackers. It attempts to express a worst-case scenario,
where the hijacker needs to at least design these hijacking Type numbers to
completely hide from the monitors of each route collector, according to our
algorithm.

As the complete stealthy indicator corresponds only to the maximum
required hijack Type to hide from each route collector, we also show Table 5.1

60 | Results and Analysis

Figure 5.12: Complete stealthy indicator of experiment set (wisc01, grnet01,
3). Each bar illustrates the minimum hijacking Type that would allow each
monitor to remain stealthy for the corresponding PRC

which provides more statistics on how to potentially hide from the majority
of monitors of some interesting collectors. In this table, statistics are shown
(per route collector) for the three hijack experiments (wisc01, grnet01, 3),
(amsterdam01, wisc01, 3) and (wisc01, amsterdam01, 3). The min (max)
represents the hijack Type that needs to be designed to hide from a single (all)
the monitors of that route collector. The median, 5%, and 95% percentiles
represent the hijacking Type required to hide from 50%, 5%, and 95% of the
monitors, respectively (all designed hijacking Types need to be greater than
the values presented in the table). Negative Type values indicate the existence
of monitors which naturally will not observe the hijack, e.g., because such
monitors are closer to the victim. Finally, the “+∞ count” counts how many
monitors’ have a max (complete stealthy indicator) value of+∞, meaning that
the hijack is theoretically unconcealable for them, e.g., because such monitors
are closer to the hijacker.

Results and Analysis | 61

Table 5.1: Some interesting PRC statistics for (wisc01, grnet01, 3),
(amsterdam01, wisc01, 3) and (wisc01, amsterdam01, 3)

collector min max median 5% 95% +∞ count
(wisc01, grnet01, 3)

rv.napafrica 2 2 2 2.0 2.0 0
rv.linx 5 7 6 5.6 7.0 0
rrc14 2 4 2 2.0 3.6 0
rrc20 6 7 6 6.0 6.6 0

...
total -1 6 2 1.0 3.0 6

(amsterdam01, wisc01, 3)
rv.napafrica 6 9 8 6.3 9.0 0

rv.linx 5 9 7 5.0 9.0 4
rrc14 3 7 7 4.2 7.0 0
rrc20 8 10 9 8.0 10.0 2

...
total -3 6 7 4.0 9.0 60

(wisc01, amsterdam01, 3)
rv.napafrica -1 2 0 -1.0 1.7 0

rv.linx -1 3 1 -1.0 3.0 0
rrc14 1 5 1 1.0 3.8 0
rrc20 -2 0 -1 -2.0 0.0 0

...
total -5 6 1 -1.0 3.0 9

We note that for the statistics from all the collectors, maximum value
and 95% is the same for (wisc01, grnet01, 3) and (wisc01, amsterdam01,
3). This means if we want to hide the hijack from the monitors, we need
similar hijacking type number for these two sets. The results in Figure 5.9
and Figure 5.5 show that in both experiments the hijack can be hid from
most monitors when the hijacking type number is 4. However, as we notice,
their value differs in the 5% percentile. This corresponding to a difference
between the two experiments when the hijacking type number is 1 and 2.
For rv.napafrica, the results are similar. When the Hijacking Type number
is 1, rv.napafrica (Figure 5.5) shows that most of the monitors reported the
hijack while Figure 5.9 does not. In the case of rv.linx, this is even more
obvious. Larger difference on 5% and 95% values correspond to differences
in hijacking Type 1 and Type 2 in Figure 5.5 and Figure 5.9. For rrc14, we
can focus on (wisc01, grnet01, 3) in Figure 5.5 and (amsterdam01, wisc01, 3)

62 | Results and Analysis

in Figure 5.8. When the hijacking type is either 1 or 2, we observe that most
monitors report the hijack. This corresponds to the 5% value which is 2.0 and
4.2 (respectively).

We also note that for the (wisc01, grnet01, 3) experiment for the route
collectors rv.linx and rrc20, the 5% and 95% percentile values are unusually
high. Figure 5.5 shows that when the hijacking type number is greater than
2, most monitors will not report the hijack. However, the values calculated
here are greater than 5 for even the 5% percentile, which is not consistent
with other experiment results. The value calculated in this experiment by the
algorithm is much larger than the other experiment results, which means that
some monitors in the algorithm will choose the hijacker for a smaller hijacking
type number, while the victim is actually chosen in fact. The algorithm appears
to be more aggressive in inferring whether the hijacking will be detected or
not. In fact, we notice drawbacks of this simple algorithm also through the
performance in the ROC space.

Figure 5.13 shows the distribution of the three experiments in the ROC
space. We treat our algorithm as a classifier, with whether a monitor can
observe the hijack or not as an judging instance. Given a hijacking type
number, the algorithm can give a judgment based on the data from the base
experiment units (classifier input) as to whether this hijacking will be observed
for a given monitor (classifier output). Meanwhile, we have the hijacking
experiment units as true instances (ground truth). So we can check the number
of False Positive with all negative instances. An interesting finding is that in
each curve the FPR and TPR decreases as the hijacking type number increases
from 1 to 4 (in most circumstances). Looking at the graph, the points with
a hijacking type number of 1 are on the far right, whereas the points with a
hijacking type number of 4 are on the far left, with the distribution of points
going from right to left as the hijacking type number increases throughout
the curve. This simple algorithm classifier has different results for different
hijacking type numbers. It shows that both FPR and TPR decrease as the
number of hijacking types increases. However, this may be related to the
fact that we have not implemented a fully stealthy hijack. In terms of the
complete stealthy indicator, none of our hijacking type numbers are of a size
that would allow the hijack to theoretically hide from all the monitors. A
possible assumption is that the ROC performance of the classifier may be
related to the distance between the hijacking type number of the operation and
the complete stealthy indicator. Overall, the classifier results are somewhat
instructive, but not really practical.

Another notable finding is that the results for (wisc01, amsterdam01, 3) are

Results and Analysis | 63

Figure 5.13: Simple algothrim accuracy in ROC space

basically on the left side, the results for (amsterdam01, wisc01, 3) is basically
on the top right side, while the results for (wisc01, grnet01, 3) are in between
as we increase the hijacking type number. This means that, in general, this
algorithm performs (wisc01, amsterdam01, 3) better than (wisc01, grnet01,
3). And it performs worst in (amsterdam01, wisc01, 3) among these three.
One obvious problem is that we can see that the FPR is over-performing when
the TPR is at an acceptably high level. This means that the algorithm is
“overestimate" in our experiments. It is possible that for some monitors, the
output of the classifier is that the monitor will report the hijack, but in the
results the monitor does not actually report. This systematic difference could
be the result of strategies within each ASes in real networks, or it could be

64 | Results and Analysis

that an algorithm that infers visibility based on As-path prepending does not to
accurately describe the state of connectivity in real networks very well. Again,
from these results, we clearly observe that the closer the hijacking type number
is to the complete stealthy indicator, the higher performance of this algorithm.
Our hijacking type number is limited by the peering testbed to a maximum of
4, but if we can increase the hijacking type number to be closer to the complete
stealthy indicator of (amsterdam01, wisc01, 3) and (wisc01, grnet01, 3), the
algorithm may perform better. However, this is simple a conjecture as we are
unable to produce empirical evidence at this time.

5.4 The Impact of Meta Parameters in Hijack-
ing

The first meta parameter that we analyze is the factor of geographical location
for the possibility of hijacking. In fact, the typical cases we have chosen
in Section 5.2 and Section 5.3 are also typical results of the geographical
location factor. The (wisc01, amsterdam01, 3) represented in Figure 5.9 and
the (amsterdam01, wisc01, 3) represented by Figure 5.8 have significantly
different results in the histogram of the number of monitors and in the ROC
curve. The results show that amsterdam01 is performing more “aggressively"
than wisc01 for monitors connected to the PRC. The word “aggressively"
here means that this location may be possibly more attractive for monitors.
The monitors are also the PRC’s peers, which means that the monitors also
have some certain characteristics in terms of geographical location. When a
hijacker announced a hijack at amsterdam01, we observe it is more difficult for
the hijacker to hide from PRC; conversely, it is much easier for the hijacker to
hide from PRC if the victim announces its prefix from the amsterdam01. This
may be due to the logical more central position of amsterdam01 in the Internet,
or it may be that amsterdam01 is in closer position to the monitors. On the
other hand, we also see that (wisc01, grnet01, 3) represented by Figure 5.5 is
based on moving the victim to a less “aggressively" position, which cause a
very different results comparing to Figure 5.9. This means that the invisibility
of the hijacker can vary to a greater extent with the hijacking type number.

The second meta parameter that we analyze is the impact caused to
hijacking by the victim’s AS-path prepending. To compare the impact of AS-
path prepending, we use the results of three experimental sets (amsterdam01,
wisc01, 2), (amsterdam01, wisc01, 1), and (amsterdam01, wisc01, 0). The
numbers 2, 1, and 0 in each experiment set represent the number of prepended

Results and Analysis | 65

ASes by the victim. A histogram of the plotted percentage stack is shown in
Figure 5.14. To reduce the image size, we only present visibility results for
PRCs where the total number of monitors is more than 15. Each group of bars
consists of three bars from left to right, which show the visibility of the hijack
for the victim’s prepending (ASes prepended: two to zero from from left to
right). It is obvious from the graph that the percentage of monitors that observe
the hijacking decreases as the victim prepending number decreases. This is the
case for the hijacking experiments with Type numbers 2, 3 and 4. Interestingly,
we notice that the visibility changes only a little for hijacking experiments
where the hijacking type number is 1. For example, under a hijacking Type
number of 1 for the rv.amsix route collector, 88% of the monitors observe
the hijack with a victim prepending of one AS which is a little better than
the 85% with a victim prepending of two ASes. As can be seen the difference
between the two is small, which makes it difficult to determine the cause of this
phenomenon. We consider two possible causes for this increased visibility:
an excessively long victim prepending number triggers some AS strategy that
has some reverse effect, or that the data fluctuates simply because of network
changes between experiment sets. There may also exist the possibility that
there is a threshold for the effect of increasing the victim prepending number
to reduce hijacking stealthiness. This is because in data with a hijacking type
number of 1 and victim prepending numbers of 2 and 3, the hijacker is visible
enough, but some PRCs still retain around 15% monitors from observing the
hijacking (e.g. rv.asix). This means that victims who resort to increasing the
victim prepending number in an attempt to expose the hijacker may not be
effective for some specific monitors, and vice versa hijackers who prepend the
As-path may not be effective in hiding the hijack from some specific monitors.
Again, we suspect that this may be due to network topology and AS routing
policies.

66 | Results and Analysis

Figure 5.14: Hijack visibility results for the AS-path prepending done by
the victim in the experiment sets (amsterdam01, wisc01, 2), (amsterdam01,
wisc01, 1), and (amsterdam01, wisc01, 0). The numbers 2, 1, and 0 represent
the number of ASes prepended.

Results and Analysis | 67

5.5 Structure of the Topology and the Pres-
ence of Key Nodes

As described in Section 3.4.3, when we focus on single experiment units, we
try to visualize the AS paths reported. Here we build up two different types of
topology: a network graph and a tree graph. Here we show an experiment unit
with a hijacking type 2 in experiment set (wisc01, grnet01, 3). As shown in
Figure 5.5, for a hijacking type number is 2, there are a fair number of monitors
that either observe or do not observe the hijacker, so this is a good topology.

To create the network graph, we simply connect the ASNs in the AS path.
If the monitor reports a path containing the hijacker, we set every AS in the
path as red to indicate the hijacked ASes. Otherwise, If the monitor reports
instead the valid path announced by the victim, we set every AS in the path
as blue to indicate unaffected ASes. We represent all ASes observed in the
AS-paths as nodes in the graph. If the paths through this node are all blue,
we set this node to blue. If the paths through this node are all red, we set
this node to red. In particular, if a path through a node has both blue and red,
indicating a partially hijacked AS, we set said nodes to green. Here we find
an interesting fact: there are nodes that are involved in building both the AS
path to the hijacker and the AS path to the victim. As shown in Figure 5.15,
we can see that there exists some green nodes and we zoomed in on the node
with ASN 174 for easier observation.

For the tree graph, we want to build up a tree graph just like the one we
shown in Figure 2.7. We combined the same nodes appearing in different paths
into one and created a tree graph based on the relationships before and after in
the path. As we found in network graph, some nodes will appear in both paths
to victim and hijacker, so one node may appear in two different branches. As
Figure 5.16 shows, we clearly observe the tree structure and the zoomed node
with ASN 174 in two branches. Here we also find another interesting fact: for
both paths to the victim and to the hijacker, there actually exists some nodes
near the root. If one hijacker could make such key nodes to not choose the
hijacking path, this could potentially be another way of creating more stealthy
hijacks.

68 | Results and Analysis

Figure 5.15: AS path topology net graph for experiment unit with hijacking
type 2 in (wisc01, grnet01, 3)

Figure 5.16: AS path topology tree graph for experiment unit with hijacking
type 2 in (wisc01, grnet01, 3)

Results and Analysis | 69

5.6 Reliability Analysis

Because of the time scale (each experiment set taking more than 8 hours), we
were unable to consider the experiment sets from repeated experiments as the
same data since the network will change with time passing by. However, we
observed the same patterns and small fluctuations in the data in the experiment
sets, so we believe that our experiment is reliable. The data collection was
implemented using BGPStream, and the whole process is reproducible. The
process of parsing and building our own database is also reproducible.

5.7 Validity Analysis

Peering Testbed was used to declare and withdraw BGP messages during
our experiments. During the experiments, our BGP announcements and
withdrawals were all confirmed by collecting observations from the grnet
looking glass [37]. Data collection was implemented through the Python
library provided by BGPStream. The data shown in the article are all fetched
from a full run of the program. The relevant fields of our own database have
also been manually tested to ensure that there are no errors.

70 | Results and Analysis

Conclusions and Future Work | 71

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The aim of this thesis is to investigate whether hijackers can use traffic
engineering methods to reduce the visibility of hijacks to monitors, then finally
try to hide from most PRC. The traffic engineering method we use in this thesis
is ASPP. For this purpose, we have divided the project into three subgoals.
By building experiments in real networks using platforms, such as Peering
Testbed, we give answers to our experimental goals. For our subgoal 1,
our results shown in Section 5.2 indicate that the use of ASPP is helpful in
improving the stealthiness of hijacking. Then, for subgoal 2, while we observe
that designing an algorithm for inferring the stealthiness of hijacking from
the routes reported by PRC could be feasible since ASPP indeed improve
the stealthiness for some monitors, our proposed simple algorithm is not very
practical. Finally, we conclude that geographical location is important for the
stealthiness of hijacking. The victim’s traffic engineering through ASPP has
also an important impact on stealthiness.

From the conclusions that we reached, we also offer conjectures about
some phenomena. If victims actively use ASPP to expose stealthy hijacking, it
may not be effective for some monitors potentially due to local device policies
of ASes in real networks. Throughout the data we collected, we did not achieve
a fully stealthy hijack due to the Peering Testbed which restricted the type
number of hijacks to no more than 4. Despite the existence of experimental
sets where only a few monitors originally observed the hijacking, at the end
there were still PRCs that were able to observe the hijacking. We speculate
that under our experimental conditions, the hijacking type number may have
to reach a greater value (i.e., ≥ 7) if a fully stealthy hijack is to be achieved.

72 | Conclusions and Future Work

6.2 Limitations

There are many limitations to our experiments, mainly due to limitations in
the Peering Testbed platform. Firstly, the Peering Testbed platform limited
our hijacking type number that we could announce to less than or equal
to 4, which resulted in us not being able to create a fully stealthy hijack
experiment. Secondly, our exploration of meta-parameter was also limited
by the options available in the Peering Testbed. Finally, the Peering Testbed
provides limited prefixes and ASNs, and we could only design experiments
serially by constructing individual experiment sets rather than in parallel
experiment sets.

6.3 Future work

Future work could be approached in two directions: breaking the limits from
the platform and combining ASPP with other methods. The fact that we
did not construct a fully stealthy hijack in our experiments may be due to
the limitations of our experiments. If we can break the restriction on the
hijacking type number, we may be able to achieve a fully stealthy hijacking
in our experiments. We also note that the hijacking type 4 hijacking still does
not result in a fully stealthy hijacking, which may mean that stealthy hijacking
in general is not feasible through ASPP alone in the real Internet. More
sophisticated stealthy hijackings may be able to be designed by combining
other traffic engineering methods, such as AS path poisoning. Also, at
the analytical level, we could probably go further. The algorithm we have
implemented is simply a comparison of the length of AS paths. More advanced
algorithms, such as algorithms using machine learning, could produce better
results. Furthermore, by combining network topology and some other meta-
information (e.g. AS rank), we may be able to control the stealthiness of
hijacking from a higher dimension. As shown in Section 5.5, hijackers may be
able to poison some specific AS to hide from large number of monitors.

6.4 Sustainability and Ethics

From the perspective of sustainable development, it is helpful to study BGP
hijacking to promote cooperation between different Internet entities and
infrastructure construction. BGP is a decentralized network protocol, and each
network entity has its own privacy and strategy. The occurrence of hijacking

Conclusions and Future Work | 73

can mean a conflict between multiple network entities. It’s hard to know
whether conflicts are the result of accidental misconfiguration or intentional,
but we can try to reduce and prevent potential conflicts. From this perspective,
PRC are necessary. At the same time, PRC as the hijacking detection
infrastructure, can become a supporting industry for Internet construction.

From an ethical point of view, our experiments use ASN and prefixes that
we applied, so there is no risk of harm to the public. However, further research
may have ethical implications. For example, poisoning existing AS on the
Internet can have serious consequences if researcher wants to try BGP AS
path poisoning.

6.5 Reflections

The aim of this project is to increase the stealthiness of hijacking, which
ultimately leads to the hiding from PRCs. Researchers can build a more
sophisticated hijacking or analysis algorithm on the basis of this research, or
they can further explore how to better deploy more PRCs for such problems.
Although the experiments are in real networks, the ASNs and prefixes of both
the hijacker and the victim are requested for the experiments, and no other
operations at the data layer (traffic black holes, etc.) are performed in the
experiments. The data sources for the experiments were public data from
public platforms, and the APIs used to build the project were also publicly
provided by several projects. Therefore, this project does not raise public risks
or ethical hijacking issues.

74 | Conclusions and Future Work

References | 75

References

[1] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos, D. Cicalese,
A. King, and A. Dainotti, “ARTEMIS: Neutralizing BGP Hijacking
within a Minute,” Jun. 2018, arXiv:1801.01085 [cs]. [Online]. Available:
http://arxiv.org/abs/1801.01085 [Pages 1, 9, and 19.]

[2] “About PEERING | PEERING - The BGP Testbed.” [Online]. Available:
https://peering.ee.columbia.edu/ [Pages 2, 17, and 19.]

[3] A. Siddiqui, “Not just another BGP Hijack,” Apr. 2020. [Online].
Available: https://www.manrs.org/2020/04/not-just-another-bgp-hijac
k/ [Page 2.]

[4] S. Kent, C. Lynn, and K. Seo, “Secure Border Gateway Protocol (S-
BGP),” IEEE Journal on Selected Areas in Communications, vol. 18,
no. 4, pp. 582–592, Apr. 2000. doi: 10.1109/49.839934 Conference
Name: IEEE Journal on Selected Areas in Communications. [Pages 2,
11, and 18.]

[5] M. Lepinski and S. Kent, “An Infrastructure to Support Secure
Internet Routing,” Internet Engineering Task Force, Request for
Comments RFC 6480, 2012, num Pages: 24. [Online]. Available:
https://datatracker.ietf.org/doc/rfc6480 [Pages 2 and 11.]

[6] R. Lychev, S. Goldberg, and M. Schapira, “Bgp security
in partial deployment: Is the juice worth the squeeze?”
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, p. 171–182,
aug 2013. doi: 10.1145/2534169.2486010. [Online]. Available:
https://doi.org/10.1145/2534169.2486010 [Page 2.]

[7] “NIST RPKI Monitor.” [Online]. Available: https://rpki-monitor.antd.
nist.gov/ [Page 2.]

http://arxiv.org/abs/1801.01085
https://peering.ee.columbia.edu/
https://www.manrs.org/2020/04/not-just-another-bgp-hijack/
https://www.manrs.org/2020/04/not-just-another-bgp-hijack/
https://datatracker.ietf.org/doc/rfc6480
https://doi.org/10.1145/2534169.2486010
https://rpki-monitor.antd.nist.gov/
https://rpki-monitor.antd.nist.gov/

76 | References

[8] E. Gregori, A. Improta, L. Lenzini, L. Rossi, and L. Sani, “On the
incompleteness of the as-level graph: A novel methodology for bgp route
collector placement,” in Proceedings of the 2012 Internet Measurement
Conference, ser. IMC ’12. New York, NY, USA: Association for
Computing Machinery, 2012. doi: 10.1145/2398776.2398803. ISBN
9781450317054 p. 253–264. [Online]. Available: https://doi.org/10.1
145/2398776.2398803 [Page 3.]

[9] A. Milolidakis, “Understanding the capabilities of route collectors to
observe stealthy hijacks: Does adding more monitors or reporting more
paths help?” Ph.D. dissertation, KTH Royal Institute of Technology,
2022. [Page 4.]

[10] J. Scudder, R. Fernando, and S. Stuart, “BGP Monitoring Protocol
(BMP),” RFC 7854, Jun. 2016. [Online]. Available: https://www.rfc-e
ditor.org/info/rfc7854 [Pages 5, 12, and 18.]

[11] Y. Rekhter, S. Hares, and T. Li, “A Border Gateway Protocol 4
(BGP-4),” Internet Engineering Task Force, Request for Comments
RFC 4271, 2006, num Pages: 104. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc4271 [Pages 7 and 8.]

[12] L. Gao and J. Rexford, “Stable internet routing without global
coordination,” IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp.
681–692, 2001. doi: 10.1109/90.974523 [Page 9.]

[13] J. Karlin, S. Forrest, and J. Rexford, “Pretty good bgp: Improving
bgp by cautiously adopting routes,” in Proceedings of the 2006
IEEE International Conference on Network Protocols, 2006. doi:
10.1109/ICNP.2006.320179 pp. 290–299. [Pages 11 and 19.]

[14] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol (s-bgp),”
IEEE Journal on Selected Areas in Communications, vol. 18, no. 4, pp.
582–592, 2000. doi: 10.1109/49.839934 [Page 11.]

[15] P.-A. Vervier, O. Thonnard, and M. Dacier, “Mind Your Blocks: On the
Stealthiness of Malicious BGP Hijacks.” in NDSS, 2015. [Page 11.]

[16] C. Testart, P. Richter, A. King, A. Dainotti, and D. Clark, “Profiling bgp
serial hijackers: Capturing persistent misbehavior in the global routing
table,” in Proceedings of the Internet Measurement Conference, ser. IMC
’19. New York, NY, USA: Association for Computing Machinery, 2019.

https://doi.org/10.1145/2398776.2398803
https://doi.org/10.1145/2398776.2398803
https://www.rfc-editor.org/info/rfc7854
https://www.rfc-editor.org/info/rfc7854
https://datatracker.ietf.org/doc/rfc4271
https://datatracker.ietf.org/doc/rfc4271

References | 77

doi: 10.1145/3355369.3355581. ISBN 9781450369480 p. 420–434.
[Online]. Available: https://doi.org/10.1145/3355369.3355581
[Page 11.]

[17] “Quagga Software Routing Suite.” [Online]. Available: https://www.no
ngnu.org/quagga/ [Page 12.]

[18] C. Orsini, A. King, D. Giordano, V. Giotsas, and A. Dainotti,
“Bgpstream: A software framework for live and historical bgp
data analysis,” in Proceedings of the 2016 Internet Measurement
Conference, ser. IMC ’16. New York, NY, USA: Association for
Computing Machinery, 2016. doi: 10.1145/2987443.2987482. ISBN
9781450345262 p. 429–444. [Online]. Available: https://doi.org/10.1
145/2987443.2987482 [Pages 12 and 18.]

[19] P. Marcos, L. Prehn, L. Leal, A. Dainotti, A. Feldmann, and
M. Barcellos, “AS-Path Prepending: There is no rose without a thorn,”
in IMC ’20. ACM, 2020. doi: 10.1145/3419394.3423642. ISBN
978-1-4503-8138-3 pp. 506–520, accepted: 2021-03-17T00:14:14Z.
[Online]. Available: https://researchcommons.waikato.ac.nz/handle/1
0289/14183 [Pages 14 and 19.]

[20] “BGPStream.” [Online]. Available: https://bgpstream.caida.org/
[Pages 17 and 18.]

[21] B. Schlinker, T. Arnold, I. Cunha, and E. Katz-Bassett, “Peering:
Virtualizing bgp at the edge for research,” in Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies, ser. CoNEXT ’19. New York, NY, USA: Association
for Computing Machinery, 2019. doi: 10.1145/3359989.3365414. ISBN
9781450369985 p. 51–67. [Online]. Available: https://doi.org/10.1145/
3359989.3365414 [Page 17.]

[22] “Route Views – University of Oregon Route Views Project.” [Online].
Available: https://www.routeviews.org/routeviews/ [Pages 18 and 19.]

[23] “Routing Information Service (RIS) Raw Dataset.” [Online]. Available:
https://labs.ripe.net/datarepository/data-sets/routing-information-servi
ce-ris-raw-dataset/ [Pages 18 and 19.]

[24] B. Kumar, “Integration of security in network routing protocols,”
SIGSAC Rev., vol. 11, no. 2, p. 18–25, apr 1993. doi:

https://doi.org/10.1145/3355369.3355581
https://www.nongnu.org/quagga/
https://www.nongnu.org/quagga/
https://doi.org/10.1145/2987443.2987482
https://doi.org/10.1145/2987443.2987482
https://researchcommons.waikato.ac.nz/handle/10289/14183
https://researchcommons.waikato.ac.nz/handle/10289/14183
https://bgpstream.caida.org/
https://doi.org/10.1145/3359989.3365414
https://doi.org/10.1145/3359989.3365414
https://www.routeviews.org/routeviews/
https://labs.ripe.net/datarepository/data-sets/routing-information-service-ris-raw-dataset/
https://labs.ripe.net/datarepository/data-sets/routing-information-service-ris-raw-dataset/

78 | References

10.1145/153949.153953. [Online]. Available: https://doi.org/10.1
145/153949.153953 [Page 18.]

[25] B. Smith, S. Murthy, and J. Garcia-Luna-Aceves, “Securing distance-
vector routing protocols,” in Proceedings of SNDSS ’97: Internet Society
1997 Symposium on Network and Distributed System Security, 1997. doi:
10.1109/NDSS.1997.579225 pp. 85–92. [Page 18.]

[26] B. Smith and J. Garcia-Luna-Aceves, “Securing the border gateway
routing protocol,” in Proceedings of GLOBECOM’96. 1996 IEEE
Global Telecommunications Conference, vol. MiniConfInternet, 1996.
doi: 10.1109/GLOCOM.1996.586129 pp. 81–85. [Page 18.]

[27] OpenBMP, “OpenBMP · OpenBMP Documentation,” Mar. 2021.
[Online]. Available: https://www.openbmp.org/ [Page 18.]

[28] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. Wu, and
L. Zhang, “Detection of invalid routing announcement in the internet,”
in Proceedings International Conference on Dependable Systems and
Networks, 2002. doi: 10.1109/DSN.2002.1028887 pp. 59–68. [Page 19.]

[29] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur, “Topology-Based
Detection of Anomalous BGP Messages,” in Recent Advances in
Intrusion Detection, G. Vigna, C. Kruegel, and E. Jonsson, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003. ISBN 978-3-540-45248-
5 pp. 17–35. [Page 19.]

[30] “PEERING client controller,” May 2022. [Online]. Available: https:
//github.com/PEERINGTestbed/client [Page 35.]

[31] “BGPStream Structure.” [Online]. Available: https://bgpstream.caida.
org/docs [Page 38.]

[32] “PyBGPStream Elems.” [Online]. Available: https://bgpstream.caida.
org/docs/api/pybgpstream/pybgpstream.html [Page 40.]

[33] “MongoDB: The Developer Data Platform.” [Online]. Available:
https://www.mongodb.com [Page 40.]

[34] “PyMongo — MongoDB Drivers.” [Online]. Available: https://www.
mongodb.com/docs/drivers/pymongo/ [Page 40.]

https://doi.org/10.1145/153949.153953
https://doi.org/10.1145/153949.153953
https://www.openbmp.org/
https://github.com/PEERINGTestbed/client
https://github.com/PEERINGTestbed/client
https://bgpstream.caida.org/docs
https://bgpstream.caida.org/docs
https://bgpstream.caida.org/docs/api/pybgpstream/pybgpstream.html
https://bgpstream.caida.org/docs/api/pybgpstream/pybgpstream.html
https://www.mongodb.com
https://www.mongodb.com/docs/drivers/pymongo/
https://www.mongodb.com/docs/drivers/pymongo/

References | 79

[35] T. Fawcett, “An introduction to roc analysis,” Pattern
Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006. doi:
https://doi.org/10.1016/j.patrec.2005.10.010 ROC Analysis in Pattern
Recognition. [Online]. Available: https://www.sciencedirect.com/scie
nce/article/pii/S016786550500303X [Pages 44 and 45.]

[36] J. A. Swets, “Measuring the accuracy of diagnostic systems,” Science,
vol. 240, no. 4857, pp. 1285–1293, 1988. doi: 10.1126/science.3287615.
[Online]. Available: https://www.science.org/doi/abs/10.1126/science.
3287615 [Page 44.]

[37] “GRNET Looking Glass.” [Online]. Available: https://mon.grnet.gr/lg/
[Page 69.]

https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.science.org/doi/abs/10.1126/science.3287615
https://www.science.org/doi/abs/10.1126/science.3287615
https://mon.grnet.gr/lg/

80 | References

TRITA-EECS-EX- 2022:00

www.kth.se

For DIVA
{
"Author1": { "Last name": "Wang",
"First name": "Kunyu",
"Local User Id": "u1n8y8ja",
"E-mail": "kunyuw@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science",
}
},
"Cycle": "2",
"Course code": "DA246X",
"Credits": "30.0",
"Degree1": {"Educational program": "Master’s Programme, Communication Systems, 120 credits"
,"programcode": "TCOMM"
,"Degree": "Master degree"
,"subjectArea": "Information and Communication Technology"
},
"Title": {
"Main title": "Investigating the Effectiveness of Stealthy Hijacks against Public Route Collectors",
"Subtitle": "Is AS-Path Prepending Enough to Hide from Public Route Collectors?",
"Language": "eng" },
"Alternative title": {
"Main title": "Undersökning av effektiviteten hos smygande kapningar mot offentliga ruttinsamlare",
"Subtitle": "Är AS-Path Prepending tillräckligt för att dölja från offentliga ruttinsamlare?",
"Language": "swe"
},
"Supervisor1": { "Last name": "Milolidakis",
"First name": "Alexandros",
"Local User Id": "u1wjyoh1",
"E-mail": "miloli@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science",
"L2": "DIVISION OF SOFTWARE AND COMPUTER SYSTEMS" }
},
"Examiner1": { "Last name": "Chiesa",
"First name": "Marco",
"Local User Id": "u18vjbx4",
"E-mail": "mchiesa@kth.se",
"organisation": {"L1": "School of Electrical Engineering and Computer Science",
"L2": "DIVISION OF SOFTWARE AND COMPUTER SYSTEMS" }
},
"National Subject Categories": "10201, 10206",
"Other information": {"Year": "2023", "Number of pages": "xvii,81"},
"Series": { "Title of series": "TRITA-EECS-EX" , "No. in series": "2022:00" },
"Opponents": { "Name": "Yulian Luo"},
"Presentation": { "Date": "2023-02-08 11:00"
,"Language":"eng"
,"Room": "via Zoom https://kth-se.zoom.us/j/64204203876"
,"City": "Stockholm" },
"Number of lang instances": "2",
"Abstract[eng]": CCCC
BGP hijacking is a threat to network organizations because traditional BGP protocols were not designed with security in mind. Currently, research
to combat hijacking is being done by detecting hijacking in real time from Public Route Collectors. However, by using AS-Path Prepending, a
well-known traffic engineering technique, hijackers could adjust the influence scope of hijacks to potentially avoid Public Route Collectors. This
thesis investigates fist, whether AS-Path Prepending is sufficient to hide from Public Route Collector, and second whether the hijacker can predict
its hijack’s stealthiness by simply comparing the AS path length with the victim. Last, we investigate the non-hijacker-controlled parameters, which
are the geographical locations and victim prepending times if the victim also enable AS-Path Prepending for traffic engineering in our study. Our
results show that on one hand, AS-Path Prepending benefits stealthy hijacks to route collectors. While on the other hand, it is not sufficient to
completely hide from route collectors only using it. By simply comparing the AS paths length, the hijacker’s prediction is constructive but not
practical. And non-hijacker-controlled parameters indeed can significantly affect the stealthiness of hijacking.
CCCC,
"Keywords[eng]": CCCC
BGP, BGP Hijack, Stealthy IP prefix hijacking, AS-Path Prepending, BGP monitoring CCCC,
"Abstract[swe]": CCCC
BGP-kapning är ett hot mot nätverksorganisationer eftersom traditionella BGP-protokoll inte har utformats med säkerheten i åtanke. För närvarande
bedrivs forskning för att bekämpa kapning genom att upptäcka kapning i realtid från offentliga ruttinsamlare. Genom att använda AS-Path
Prepending, en välkänd trafikteknik, kan kapare dock justera kapningarnas inflytande för att eventuellt undvika offentliga ruttinsamlare. I den här
avhandlingen undersöks för det första om AS-Path Prepending är tillräckligt för att dölja sig för Public Route Collector och för det andra om kaparen
kan förutsäga hur smygande kapningen är genom att helt enkelt jämföra AS Path-längden med offrets. Slutligen undersöker vi de parametrar som
inte kontrolleras av kaparen, dvs. geografiska platser och offrets prependingtider om offret också aktiverar AS-Path Prepending för trafikteknik i vår
studie. Våra resultat visar att AS-Path Prepending å ena sidan gynnar smygande kapningar av ruttinsamlare. Å andra sidan räcker det inte för att
helt och hållet dölja sig för ruttinsamlare om man bara använder det. Genom att helt enkelt jämföra AS-vägarnas längd är kaparens förutsägelser
konstruktiva men inte praktiska. Parametrar som inte kontrolleras av kaparen kan faktiskt påverka kapningens smygande på ett betydande sätt.
CCCC,
"Keywords[swe]": CCCC
BGP, BGP Hijack, Stealthy IP prefix hijacking, AS-Path Prepending, BGP-övervakning CCCC,
}

	Introduction
	Background
	Problem
	Purpose
	Goals
	Research Methodology
	Delimitations
	Structure of the thesis

	Background
	BGP Route Delivery Process
	BGP Hijacking Classification
	Affected Prefix
	Announced AS-path
	Data plane
	Methods against BGP Hijacking

	PRC and Monitors
	AS-Path Prepending
	ASPP in Traffic Engineering
	ASPP in Hijacking

	PEERING and BGPStream
	PEERING Testbed
	BGPStream

	Related Work

	Methods
	Research Process
	Experiment Structure Design
	Data Collection Design

	Experiment Unit design
	Data Collection
	Planned Data Analysis
	The Effect of Type Number and the Accuracy of Inference - Between Experiment Units
	The Impact of Meta Parameters - Between Experiment Sets
	Structure of the Topology and the Presence of Key Nodes - In Experiment Unit

	Technical Details
	Experiment Design
	Peering Testbed
	Experiment Set and Experiment Units Scripts

	Data Collection
	BGPStream
	MongoDB

	Data Analysis
	Analysis of ASPP in Hijacking
	Analysis of the Accuracy of Hijacking Inference
	Complete Stealthy Indicator
	TPR and FPR

	Analysis of Meta Parameters

	Results and Analysis
	Data Collected and Statistical Information Analysis
	The Impact of ASPP in Hijacking
	Prediction of Hijack Stealthiness by a Simple Algorithm
	The Impact of Meta Parameters in Hijacking
	Structure of the Topology and the Presence of Key Nodes
	Reliability Analysis
	Validity Analysis

	Conclusions and Future Work
	Conclusions
	Limitations
	Future work
	Sustainability and Ethics
	Reflections

	References

